Unsupervised Breast Masses Classification Through Optimum-Path Forest

被引:9
|
作者
Ribeiro, Patricia. B. [1 ]
Passos, Leandro. A., Jr. [1 ]
da Silva, Luis. A. [1 ]
da Costa, Kelton A. P. [1 ]
Papa, Joao P. [1 ]
Romero, Roseli A. F. [2 ]
机构
[1] Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
[2] Univ Sao Paulo, Dept Comp Sci, Sao Paulo, Brazil
关键词
Optimum-Path Fores; Breast masses; Mammography; MAMMOGRAPHY; FEATURES;
D O I
10.1109/CBMS.2015.53
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computer-Aided Diagnosis (CAD) can be divided into two main categories : CADe (Computer-Aided Detection), which is focused on the detection of structures of interest, as well as to assist radiologists to find out signals of interest that might be hidden to human vision; and the CADx (ComputerAided Diagnosis), which works as a second observer, being responsible to give an opinion on a specific lesion. In CADe -based systems, the identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest. The main contribution of this study is to introduce the unsupervised classifier Optimum-Path Forest to identify breast masses, and to evaluate its performance against with two other unsupervised techniques (Gaussian Mixture Model and k-Means) using texture features from images obtained from a private dataset composed by 120 images with and without the presence of masses.
引用
收藏
页码:238 / 243
页数:6
相关论文
共 50 条
  • [41] EFFICIENT FAULT LOCATION IN UNDERGROUND DISTRIBUTION SYSTEMS THROUGH OPTIMUM-PATH FOREST
    Souza, Andre N.
    da Costa, Pedro, Jr.
    da Silva, Paulo S.
    Ramos, Caio C. O.
    Papa, Joao P.
    APPLIED ARTIFICIAL INTELLIGENCE, 2012, 26 (05) : 503 - 515
  • [42] SMS Spam Filtering Through Optimum-path Forest-based Classifiers
    Fernandes, Dheny
    da Costa, Kelton A. P.
    Almeida, Tiago A.
    Papa, Joao Paulo
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 133 - 137
  • [43] OPFSumm: on the video summarization using Optimum-Path Forest
    Guilherme B. Martins
    Danillo R. Pereira
    Jurandy G. Almeida
    Victor Hugo C. de Albuquerque
    João Paulo Papa
    Multimedia Tools and Applications, 2020, 79 : 11195 - 11211
  • [44] OPFython: A Python']Python implementation for Optimum-Path Forest
    de Rosa, Gustavo H.
    Papa, Joao P.
    SOFTWARE IMPACTS, 2021, 9
  • [45] Intrusion Detection System Using Optimum-Path Forest
    Pereira, Clayton
    Nakamura, Rodrigo
    Papa, Joao Paulo
    Costa, Kelton
    2011 IEEE 36TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2011, : 183 - 186
  • [46] OPFSumm: on the video summarization using Optimum-Path Forest
    Martins, Guilherme B.
    Pereira, Danillo R.
    Almeida, Jurandy G.
    de Albuquerque, Victor Hugo C.
    Papa, Joao Paulo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (15-16) : 11195 - 11211
  • [47] Training Optimum-Path Forest on Graphics Processing Units
    Iwashita, Adriana S.
    Romero, Marcos V. T.
    Baldassin, Alexandro
    Costa, Kelton A. P.
    Papa, Joao P.
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 581 - 588
  • [48] Hierarchical learning using deep optimum-path forest
    Afonso, Luis C. S.
    Pereira, Clayton R.
    Weber, Silke A. T.
    Hook, Christian
    Falcao, Alexandre X.
    Papa, Joao P.
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [49] Interactive Classification of Remote Sensing Images by Using Optimum-Path Forest and Genetic Programming
    dos Santos, Jefersson Alex
    da Silva, Andre Tavares
    Torres, Ricardo da Silva
    Falcao, Alexandre Xavier
    Magalhaes, Leo P.
    Lamparelli, Rubens A. C.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 14TH INTERNATIONAL CONFERENCE, CAIP 2011, PT 2, 2011, 6855 : 300 - 307
  • [50] Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification
    Nachif Fernandes, Silas Evandro
    de Souza, Andre Nunes
    Gastaldello, Danilo Sinkiti
    Pereira, Danillo Roberto
    Papa, Joao Paulo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (20) : 5736 - 5762