Intrusion Detection in Computer Networks Using Optimum-Path Forest Clustering

被引:0
|
作者
Costa, Kelton [1 ]
Pereira, Clayton [1 ]
Nakamura, Rodrigo [1 ]
Papa, Joao [1 ]
机构
[1] UNESP Univ Estadual Paulista, Dept Comp, Sao Paulo, Brazil
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques.
引用
收藏
页码:128 / 131
页数:4
相关论文
共 50 条
  • [1] An Optimum-Path Forest framework for intrusion detection in computer networks
    Pereira, Clayton R.
    Nakamura, Rodrigo Y. M.
    Costa, Kelton A. P.
    Papa, Joao P.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (06) : 1226 - 1234
  • [2] Intrusion Detection System Using Optimum-Path Forest
    Pereira, Clayton
    Nakamura, Rodrigo
    Papa, Joao Paulo
    Costa, Kelton
    [J]. 2011 IEEE 36TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2011, : 183 - 186
  • [3] Boosting Optimum-Path Forest Clustering Through Harmony Search and Its Applications for Intrusion Detection in Computer Networks
    Costa, Kelton
    Pereira, Clayton
    Nakamura, Rodrigo
    Pereira, Luis
    Papa, Joao
    [J]. 2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2012, : 181 - 185
  • [4] A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks
    Costa, Kelton A. P.
    Pereira, Luis A. M.
    Nakamura, Rodrigo Y. M.
    Pereira, Clayton R.
    Papa, Joao P.
    Falcao, Alexandre Xavier
    [J]. INFORMATION SCIENCES, 2015, 294 : 95 - 108
  • [5] Optimum-path forest stacking-based ensemble for intrusion detection
    Mateus A. Bertoni
    Gustavo H. de Rosa
    Jose R. F. Brega
    [J]. Evolutionary Intelligence, 2022, 15 : 2037 - 2054
  • [6] Optimum-path forest stacking-based ensemble for intrusion detection
    Bertoni, Mateus A.
    de Rosa, Gustavo H.
    Brega, Jose R. F.
    [J]. EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 2037 - 2054
  • [7] On the Training of Artificial Neural Networks with Radial Basis Function Using Optimum-Path Forest Clustering
    Rosa, Gustavo H.
    Costa, Kelton A. P.
    Passos Junior, Leandro A.
    Papa, Joao P.
    Falcao, Alexandre X.
    Tavares, Joao Manuel R. S.
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1472 - 1477
  • [8] Parkinson Disease Identification using Residual Networks and Optimum-Path Forest
    Passos, Leandro A.
    Pereira, Clayton R.
    Rezende, Edmar R. S.
    Carvalho, Tiago J.
    Weber, Silke A. T.
    Hook, Christian
    Papa, Joao P.
    [J]. 2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 325 - 329
  • [9] Static Video Summarization through Optimum-Path Forest Clustering
    Martins, G. B.
    Afonso, L. C. S.
    Osaku, D.
    Almeida, Jurandy
    Papa, J. P.
    [J]. PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 893 - 900
  • [10] Information Ranking Using Optimum-Path Forest
    Ascencao, Nathalia Q.
    Afonso, Luis C. S.
    Colombo, Danilo
    Oliveira, Luciano
    Papa, Joao P.
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,