A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks

被引:48
|
作者
Costa, Kelton A. P. [1 ]
Pereira, Luis A. M. [2 ]
Nakamura, Rodrigo Y. M. [1 ]
Pereira, Clayton R. [3 ]
Papa, Joao P. [1 ]
Falcao, Alexandre Xavier [2 ]
机构
[1] Univ Estadual Paulista, Dept Comp, Bauru, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, Brazil
[3] Univ Fed Sao Carlos, Dept Comp, BR-13560 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Intrusion detection; Optimum-path forest; Meta-heuristic; Clustering; SYSTEM; ALGORITHM;
D O I
10.1016/j.ins.2014.09.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a nature-inspired approach to estimate the probability density function (pdf) used for data clustering based on the optimum-path forest algorithm (OPFC). OPFC interprets a dataset as a graph, whose nodes are the samples and each sample is connected to its k-nearest neighbors in a given feature space (a k-nn graph). The nodes of the graph are weighted by their pdf values and the pdf is computed based on the distances between the samples and their k-nearest neighbors. Once the k-nn graph is defined, OPFC finds one sample (root) at each maximum of the pdf and propagates one optimum-path tree (cluster) from each root to the remaining samples of its dome. Clustering effectiveness will depend on the pdf estimation, and the proposed approach efficiently computes the best value of k for a given application. We validate our approach in the context of intrusion detection in computer networks. First, we compare OPFC with data clustering based on k-means, and self-organization maps. Second, we evaluate several metaheuristic techniques to find the best value of k. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:95 / 108
页数:14
相关论文
共 19 条
  • [1] Nature-inspired optimum-path forest
    Sugi Afonso, Luis Claudio
    Rodrigues, Douglas
    Papa, Joao Paulo
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (01) : 317 - 328
  • [2] Nature-inspired optimum-path forest
    Luis Claudio Sugi Afonso
    Douglas Rodrigues
    João Paulo Papa
    Evolutionary Intelligence, 2023, 16 : 317 - 328
  • [3] Intrusion Detection in Computer Networks Using Optimum-Path Forest Clustering
    Costa, Kelton
    Pereira, Clayton
    Nakamura, Rodrigo
    Papa, Joao
    37TH ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2012), 2012, : 128 - 131
  • [4] An Optimum-Path Forest framework for intrusion detection in computer networks
    Pereira, Clayton R.
    Nakamura, Rodrigo Y. M.
    Costa, Kelton A. P.
    Papa, Joao P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (06) : 1226 - 1234
  • [5] Boosting Optimum-Path Forest Clustering Through Harmony Search and Its Applications for Intrusion Detection in Computer Networks
    Costa, Kelton
    Pereira, Clayton
    Nakamura, Rodrigo
    Pereira, Luis
    Papa, Joao
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2012, : 181 - 185
  • [6] Intrusion Detection System Using Optimum-Path Forest
    Pereira, Clayton
    Nakamura, Rodrigo
    Papa, Joao Paulo
    Costa, Kelton
    2011 IEEE 36TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2011, : 183 - 186
  • [7] Optimum-path forest stacking-based ensemble for intrusion detection
    Mateus A. Bertoni
    Gustavo H. de Rosa
    Jose R. F. Brega
    Evolutionary Intelligence, 2022, 15 : 2037 - 2054
  • [8] Optimum-path forest stacking-based ensemble for intrusion detection
    Bertoni, Mateus A.
    de Rosa, Gustavo H.
    Brega, Jose R. F.
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 2037 - 2054
  • [9] A Divide-and-Conquer Clustering Approach based on Optimum-Path Forest
    Montero, Adan Echemendia
    Falcao, Alexandre Xavier
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 416 - 423
  • [10] A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest
    Oba Ramos, Caio Cesar
    de Sousa, Andra Nunes
    Papa, Joao Paulo
    Falcao, Alexandre Xavier
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (01) : 181 - 189