Nature-inspired optimum-path forest

被引:0
|
作者
Sugi Afonso, Luis Claudio [1 ]
Rodrigues, Douglas [1 ]
Papa, Joao Paulo [1 ]
机构
[1] UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Optimum-Path Forest; Meta-heuristics; Pattern Classification; OPTIMIZATION; ALGORITHM;
D O I
10.1007/s12065-021-00664-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Optimum-Path Forest (OPF) is a graph-based classifier that models pattern recognition problems as a graph partitioning task. The OPF learning process is performed in a competitive fashion where a few key samples (i.e., prototypes) try to conquer the remaining training samples to build optimum-path trees (OPT). The task of selecting prototypes is paramount to obtain high-quality OPTs, thus being of great importance to the classifier. The most used approach computes a minimum spanning tree over the training set and promotes the samples nearby the decision boundary as prototypes. Although such methodology has obtained promising results in the past year, it can be prone to overfitting. In this work, it is proposed a metaheuristic-based approach (OPFmh) for the selection of prototypes, being such a task modeled as an optimization problem whose goal is to improve accuracy. The experimental results showed the OPFmh can reduce overfitting, as well as the number of prototypes in many situations. Moreover, OPFmh achieved competitive accuracies and outperformed OPF in the experimental scenarios.
引用
收藏
页码:317 / 328
页数:12
相关论文
共 50 条
  • [1] Nature-inspired optimum-path forest
    Luis Claudio Sugi Afonso
    Douglas Rodrigues
    João Paulo Papa
    Evolutionary Intelligence, 2023, 16 : 317 - 328
  • [2] A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks
    Costa, Kelton A. P.
    Pereira, Luis A. M.
    Nakamura, Rodrigo Y. M.
    Pereira, Clayton R.
    Papa, Joao P.
    Falcao, Alexandre Xavier
    INFORMATION SCIENCES, 2015, 294 : 95 - 108
  • [3] Information Ranking Using Optimum-Path Forest
    Ascencao, Nathalia Q.
    Afonso, Luis C. S.
    Colombo, Danilo
    Oliveira, Luciano
    Papa, Joao P.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [4] On the Training Patterns Pruning for Optimum-Path Forest
    Papa, Joao P.
    Falcao, Alexandre X.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 259 - 268
  • [5] A New Variant of the Optimum-Path Forest Classifier
    Papa, Joao P.
    Falcao, Alexandre X.
    ADVANCES IN VISUAL COMPUTING, PT I, PROCEEDINGS, 2008, 5358 : 935 - 944
  • [6] A Learning Algorithm for the Optimum-Path Forest Classifier
    Papa, Joao Paulo
    Falcao, Alexandre Xavier
    GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS, 2009, 5534 : 195 - 204
  • [7] Fast Optimum-Path Forest Classification on Graphics Processors
    Romero, Marcos V. T.
    Iwashita, Adriana S.
    Papa, Luciene P.
    Souza, Andre N.
    Papa, Joao P.
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 627 - 631
  • [8] OPFSumm: on the video summarization using Optimum-Path Forest
    Guilherme B. Martins
    Danillo R. Pereira
    Jurandy G. Almeida
    Victor Hugo C. de Albuquerque
    João Paulo Papa
    Multimedia Tools and Applications, 2020, 79 : 11195 - 11211
  • [9] Supervised Pattern Classification Based on Optimum-Path Forest
    Papa, J. P.
    Falcao, A. X.
    Suzuki, C. T. N.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2009, 19 (02) : 120 - 131
  • [10] OPFython: A Python']Python implementation for Optimum-Path Forest
    de Rosa, Gustavo H.
    Papa, Joao P.
    SOFTWARE IMPACTS, 2021, 9