Nature-inspired optimum-path forest

被引:0
|
作者
Sugi Afonso, Luis Claudio [1 ]
Rodrigues, Douglas [1 ]
Papa, Joao Paulo [1 ]
机构
[1] UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Optimum-Path Forest; Meta-heuristics; Pattern Classification; OPTIMIZATION; ALGORITHM;
D O I
10.1007/s12065-021-00664-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Optimum-Path Forest (OPF) is a graph-based classifier that models pattern recognition problems as a graph partitioning task. The OPF learning process is performed in a competitive fashion where a few key samples (i.e., prototypes) try to conquer the remaining training samples to build optimum-path trees (OPT). The task of selecting prototypes is paramount to obtain high-quality OPTs, thus being of great importance to the classifier. The most used approach computes a minimum spanning tree over the training set and promotes the samples nearby the decision boundary as prototypes. Although such methodology has obtained promising results in the past year, it can be prone to overfitting. In this work, it is proposed a metaheuristic-based approach (OPFmh) for the selection of prototypes, being such a task modeled as an optimization problem whose goal is to improve accuracy. The experimental results showed the OPFmh can reduce overfitting, as well as the number of prototypes in many situations. Moreover, OPFmh achieved competitive accuracies and outperformed OPF in the experimental scenarios.
引用
收藏
页码:317 / 328
页数:12
相关论文
共 50 条
  • [21] Pattern Analysis in Drilling Reports using Optimum-Path Forest
    Sousa, G. J.
    Pedronette, D. C. G.
    Baldassin, A.
    Privatto, P. I. M.
    Gaseta, M.
    Guilherme, I. R.
    Colombo Cenpes, D.
    Afonso, L. C. S.
    Papa, J. P.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [22] Static Video Summarization through Optimum-Path Forest Clustering
    Martins, G. B.
    Afonso, L. C. S.
    Osaku, D.
    Almeida, Jurandy
    Papa, J. P.
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 893 - 900
  • [23] Multiple-Instance Learning through Optimum-Path Forest
    Afonso, Luis C. S.
    Colombo, Danilo
    Pereira, Clayton R.
    Costa, Kelton A. P.
    Papa, Joao P.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [24] Enhancing Brain Storm Optimization Through Optimum-Path Forest
    Sugi Afonso, Luis Claudio
    Passos, Leandro, Jr.
    Papa, Joao Paulo
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 183 - 188
  • [25] An Optimum-Path Forest framework for intrusion detection in computer networks
    Pereira, Clayton R.
    Nakamura, Rodrigo Y. M.
    Costa, Kelton A. P.
    Papa, Joao P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (06) : 1226 - 1234
  • [26] Efficient supervised optimum-path forest classification for large datasets
    Papa, Joao P.
    Falcao, Alexandre X.
    de Albuquerque, Victor Hugo C.
    Tavares, Joao Manuel R. S.
    PATTERN RECOGNITION, 2012, 45 (01) : 512 - 520
  • [27] Barrett's Esophagus Identification Using Optimum-Path Forest
    Souza, Luis A., Jr.
    Afonso, Luis C. S.
    Palm, Christoph
    Papa, Joao P.
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 308 - 314
  • [28] Optimum-Path Forest Classifier for Large Scale Biometric Applications
    Afonso, L. C. S.
    Papa, J. P.
    Marana, A. N.
    Poursaberi, A.
    Yanushkevich, S.
    Gavrilova, M.
    2012 THIRD INTERNATIONAL CONFERENCE ON EMERGING SECURITY TECHNOLOGIES (EST), 2012, : 58 - 61
  • [29] Learning to Classify Seismic Images with Deep Optimum-Path Forest
    Afonso, Luis
    Vidal, Alexandre
    Kuroda, Michelle
    Falcao, Alexandre
    Papa, Joao
    2016 29TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2016, : 401 - 407
  • [30] Face Recognition using Optimum-path Forest Local Analysis
    Amorim, Willian Paraguassu
    de Cavalho, Marcelo Henriques
    Odakura, Valguima V. V. A.
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 242 - 248