Nature-inspired optimum-path forest

被引:0
|
作者
Sugi Afonso, Luis Claudio [1 ]
Rodrigues, Douglas [1 ]
Papa, Joao Paulo [1 ]
机构
[1] UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Optimum-Path Forest; Meta-heuristics; Pattern Classification; OPTIMIZATION; ALGORITHM;
D O I
10.1007/s12065-021-00664-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Optimum-Path Forest (OPF) is a graph-based classifier that models pattern recognition problems as a graph partitioning task. The OPF learning process is performed in a competitive fashion where a few key samples (i.e., prototypes) try to conquer the remaining training samples to build optimum-path trees (OPT). The task of selecting prototypes is paramount to obtain high-quality OPTs, thus being of great importance to the classifier. The most used approach computes a minimum spanning tree over the training set and promotes the samples nearby the decision boundary as prototypes. Although such methodology has obtained promising results in the past year, it can be prone to overfitting. In this work, it is proposed a metaheuristic-based approach (OPFmh) for the selection of prototypes, being such a task modeled as an optimization problem whose goal is to improve accuracy. The experimental results showed the OPFmh can reduce overfitting, as well as the number of prototypes in many situations. Moreover, OPFmh achieved competitive accuracies and outperformed OPF in the experimental scenarios.
引用
收藏
页码:317 / 328
页数:12
相关论文
共 50 条
  • [41] AUTOMATIC VISUAL DICTIONARY GENERATION THROUGH OPTIMUM-PATH FOREST CLUSTERING
    Afonso, L.
    Papa, J.
    Papa, L.
    Marana, A.
    Rocha, Anderson
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1897 - 1900
  • [42] Semi-Supervised Pattern Classification Using Optimum-Path Forest
    Amorim, Willian P.
    Falcao, Alexandre X.
    Carvalho, Marcelo H.
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 111 - 118
  • [43] LAND USE IMAGE CLASSIFICATION THROUGH OPTIMUM-PATH FOREST CLUSTERING
    Pisani, R.
    Riedel, P.
    Ferreira, M.
    Marques, M.
    Mizobe, R.
    Papa, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 826 - 829
  • [44] Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets
    Castelo-Fernandez, Cesar
    de Rezende, Pedro J.
    Falcao, Alexandre X.
    Papa, Joao Paulo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2010, 6419 : 467 - +
  • [45] Recognition of Handwritten Digits Using the Signature Features and Optimum-Path Forest
    Lopes, G. S.
    Vieira, D. C. da S.
    Rodrigues, A. W. O.
    Reboucas Filho, P. P.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (05) : 2455 - 2460
  • [46] Parkinson Disease Identification using Residual Networks and Optimum-Path Forest
    Passos, Leandro A.
    Pereira, Clayton R.
    Rezende, Edmar R. S.
    Carvalho, Tiago J.
    Weber, Silke A. T.
    Hook, Christian
    Papa, Joao P.
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 325 - 329
  • [47] Data Clustering as an Optimum-Path Forest Problem with Applications in Image Analysis
    Rocha, Leonardo Marques
    Cappabianco, Fabio A. M.
    Falcao, Alexandre Xavier
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2009, 19 (02) : 50 - 68
  • [48] Optimum-path forest stacking-based ensemble for intrusion detection
    Mateus A. Bertoni
    Gustavo H. de Rosa
    Jose R. F. Brega
    Evolutionary Intelligence, 2022, 15 : 2037 - 2054
  • [49] Optimum-Path Forest based on k-connectivity: Theory and applications
    Papa, Joao Paulo
    Nachif Fernandes, Silas Evandro
    Falcao, Alexandre Xavier
    PATTERN RECOGNITION LETTERS, 2017, 87 : 117 - 126
  • [50] Automatic Video Summarization Using the Optimum-Path Forest Unsupervised Classifier
    Castelo-Fernandez, Cesar
    Calderon-Ruiz, Guillermo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 760 - 767