Semi-Supervised Pattern Classification Using Optimum-Path Forest

被引:13
|
作者
Amorim, Willian P. [1 ]
Falcao, Alexandre X. [2 ]
Carvalho, Marcelo H. [1 ]
机构
[1] Univ Fed Mato Grosso do Sul, FACOM, Campo Grande, MS, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
关键词
Semi-Supervised Learning; Pattern Recognition; Optimum-Path Forest Classifiers; SEGMENTATION;
D O I
10.1109/SIBGRAPI.2014.45
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a semi-supervised pattern classification approach based on the optimum-path forest (OPF) methodology. The method transforms the training set into a graph, finds prototypes in all classes among labeled training nodes, as in the original supervised OPF training, and propagates the class of each prototype to its most closely connected samples among the remaining labeled and unlabeled nodes of the graph. The classifier is an optimum-path forest rooted at those prototypes and the class of a new sample is determined, in an incremental way, as the class of its most closely connected prototype. We compare it with the supervised version using different learning strategies and an efficient method, Transductive Support Vector Machines (TSVM), on several datasets. Experimental results show the semi-supervised approach advantages in accuracy with statistical significance over the supervised method and TSVM. We also show the gain in accuracy of semi-supervised approach when more representative samples are selected for the training set.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [1] Active Semi-Supervised Learning using Optimum-Path Forest
    Saito, Priscila T. M.
    Amorim, Willian P.
    Falcao, Alexandre X.
    de Rezende, Pedro J.
    Suzuki, Celso T. N.
    Gomes, Jancarlo F.
    de Carvalho, Marcelo H.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3798 - 3803
  • [2] Supervised Pattern Classification Based on Optimum-Path Forest
    Papa, J. P.
    Falcao, A. X.
    Suzuki, C. T. N.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2009, 19 (02) : 120 - 131
  • [3] Multi-label semi-supervised classification through optimum-path forest
    Amorim, Willian P.
    Falcao, Alexandre X.
    Papa, Joao P.
    INFORMATION SCIENCES, 2018, 465 : 86 - 104
  • [4] Semi-Supervised Self-Training Method Based on an Optimum-Path Forest
    Li, Junnan
    Zhu, Qingsheng
    IEEE ACCESS, 2019, 7 : 36388 - 36399
  • [5] Supervised Video Genre Classification Using Optimum-Path Forest
    Martins, Guilherme B.
    Almeida, Jurandy
    Papa, Joao Paulo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 735 - 742
  • [6] Efficient supervised optimum-path forest classification for large datasets
    Papa, Joao P.
    Falcao, Alexandre X.
    de Albuquerque, Victor Hugo C.
    Tavares, Joao Manuel R. S.
    PATTERN RECOGNITION, 2012, 45 (01) : 512 - 520
  • [7] A comprehensive study among distance measures on supervised optimum-path forest classification
    de Rosa, Gustavo H.
    Roder, Mateus
    Passos, Leandro A.
    Papa, Joao Paulo
    APPLIED SOFT COMPUTING, 2024, 164
  • [8] Pattern Analysis in Drilling Reports using Optimum-Path Forest
    Sousa, G. J.
    Pedronette, D. C. G.
    Baldassin, A.
    Privatto, P. I. M.
    Gaseta, M.
    Guilherme, I. R.
    Colombo Cenpes, D.
    Afonso, L. C. S.
    Papa, J. P.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [9] Improving Optimum-Path Forest Classification Using Confidence Measures
    Fernandes, Silas E. N.
    Scheirer, Walter
    Cox, David D.
    Papa, Joao Paulo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 619 - 625
  • [10] Fast Optimum-Path Forest Classification on Graphics Processors
    Romero, Marcos V. T.
    Iwashita, Adriana S.
    Papa, Luciene P.
    Souza, Andre N.
    Papa, Joao P.
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 627 - 631