Semi-Supervised Pattern Classification Using Optimum-Path Forest

被引:13
|
作者
Amorim, Willian P. [1 ]
Falcao, Alexandre X. [2 ]
Carvalho, Marcelo H. [1 ]
机构
[1] Univ Fed Mato Grosso do Sul, FACOM, Campo Grande, MS, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
关键词
Semi-Supervised Learning; Pattern Recognition; Optimum-Path Forest Classifiers; SEGMENTATION;
D O I
10.1109/SIBGRAPI.2014.45
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a semi-supervised pattern classification approach based on the optimum-path forest (OPF) methodology. The method transforms the training set into a graph, finds prototypes in all classes among labeled training nodes, as in the original supervised OPF training, and propagates the class of each prototype to its most closely connected samples among the remaining labeled and unlabeled nodes of the graph. The classifier is an optimum-path forest rooted at those prototypes and the class of a new sample is determined, in an incremental way, as the class of its most closely connected prototype. We compare it with the supervised version using different learning strategies and an efficient method, Transductive Support Vector Machines (TSVM), on several datasets. Experimental results show the semi-supervised approach advantages in accuracy with statistical significance over the supervised method and TSVM. We also show the gain in accuracy of semi-supervised approach when more representative samples are selected for the training set.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [31] SSPS: A Semi-Supervised Pattern Shift for Classification
    Enliang Hu
    Xuesong Yin
    Yongming Wang
    Songcan Chen
    Neural Processing Letters, 2010, 31 : 243 - 257
  • [32] Semi-supervised learning for Bayesian pattern classification
    Center, JL
    Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, 803 : 517 - 524
  • [33] SSPS: A Semi-Supervised Pattern Shift for Classification
    Hu, Enliang
    Yin, Xuesong
    Wang, Yongming
    Chen, Songcan
    NEURAL PROCESSING LETTERS, 2010, 31 (03) : 243 - 257
  • [34] On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification
    Lopes, Ricardo
    Costa, Kelton
    Papa, Joao
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 117 - 125
  • [35] Automatic Classification of Fish Germ Cells Through Optimum-Path Forest
    Papa, Joao P.
    Gutierrez, Mario E. M.
    Nakamura, Rodrigo Y. M.
    Papa, Luciene P.
    Vicentini, Irene B. F.
    Vicentini, Carlos A.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 5084 - 5087
  • [36] SEMI-SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGE USING RANDOM FOREST ALGORITHM
    Amini, S.
    Homayouni, S.
    Safari, A.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [37] Barrett's Esophagus Identification Using Optimum-Path Forest
    Souza, Luis A., Jr.
    Afonso, Luis C. S.
    Palm, Christoph
    Papa, Joao P.
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 308 - 314
  • [38] Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification
    Nachif Fernandes, Silas Evandro
    de Souza, Andre Nunes
    Gastaldello, Danilo Sinkiti
    Pereira, Danillo Roberto
    Papa, Joao Paulo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (20) : 5736 - 5762
  • [39] Face Recognition using Optimum-path Forest Local Analysis
    Amorim, Willian Paraguassu
    de Cavalho, Marcelo Henriques
    Odakura, Valguima V. V. A.
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 242 - 248
  • [40] ROBUST AND FAST VOWEL RECOGNITION USING OPTIMUM-PATH FOREST
    Papa, Joao P.
    Marana, Aparecido N.
    Spadotto, Andre A.
    Guido, Rodrigo C.
    Falcao, Alexandre X.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2190 - 2193