Semi-Supervised Pattern Classification Using Optimum-Path Forest

被引:13
|
作者
Amorim, Willian P. [1 ]
Falcao, Alexandre X. [2 ]
Carvalho, Marcelo H. [1 ]
机构
[1] Univ Fed Mato Grosso do Sul, FACOM, Campo Grande, MS, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
关键词
Semi-Supervised Learning; Pattern Recognition; Optimum-Path Forest Classifiers; SEGMENTATION;
D O I
10.1109/SIBGRAPI.2014.45
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a semi-supervised pattern classification approach based on the optimum-path forest (OPF) methodology. The method transforms the training set into a graph, finds prototypes in all classes among labeled training nodes, as in the original supervised OPF training, and propagates the class of each prototype to its most closely connected samples among the remaining labeled and unlabeled nodes of the graph. The classifier is an optimum-path forest rooted at those prototypes and the class of a new sample is determined, in an incremental way, as the class of its most closely connected prototype. We compare it with the supervised version using different learning strategies and an efficient method, Transductive Support Vector Machines (TSVM), on several datasets. Experimental results show the semi-supervised approach advantages in accuracy with statistical significance over the supervised method and TSVM. We also show the gain in accuracy of semi-supervised approach when more representative samples are selected for the training set.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [21] Unsupervised Breast Masses Classification Through Optimum-Path Forest
    Ribeiro, Patricia. B.
    Passos, Leandro. A., Jr.
    da Silva, Luis. A.
    da Costa, Kelton A. P.
    Papa, Joao P.
    Romero, Roseli A. F.
    2015 IEEE 28TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2015, : 238 - 243
  • [22] OPFSumm: on the video summarization using Optimum-Path Forest
    Guilherme B. Martins
    Danillo R. Pereira
    Jurandy G. Almeida
    Victor Hugo C. de Albuquerque
    João Paulo Papa
    Multimedia Tools and Applications, 2020, 79 : 11195 - 11211
  • [23] Intrusion Detection System Using Optimum-Path Forest
    Pereira, Clayton
    Nakamura, Rodrigo
    Papa, Joao Paulo
    Costa, Kelton
    2011 IEEE 36TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2011, : 183 - 186
  • [24] OPFSumm: on the video summarization using Optimum-Path Forest
    Martins, Guilherme B.
    Pereira, Danillo R.
    Almeida, Jurandy G.
    de Albuquerque, Victor Hugo C.
    Papa, Joao Paulo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (15-16) : 11195 - 11211
  • [25] Hierarchical learning using deep optimum-path forest
    Afonso, Luis C. S.
    Pereira, Clayton R.
    Weber, Silke A. T.
    Hook, Christian
    Falcao, Alexandre X.
    Papa, Joao P.
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [26] Semi-supervised Classification and Segmentation of Forest Fire Using Autoencoders
    Koottungal, Akash
    Pandey, Shailesh
    Nambiar, Athira
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2023, 2023, 14124 : 27 - 39
  • [27] Spoken emotion recognition through optimum-path forest classification using glottal features
    Iliev, Alexander I.
    Scordilis, Michael S.
    Papa, Joao P.
    Falcao, Alexandre X.
    COMPUTER SPEECH AND LANGUAGE, 2010, 24 (03): : 445 - 460
  • [28] Interactive Classification of Remote Sensing Images by Using Optimum-Path Forest and Genetic Programming
    dos Santos, Jefersson Alex
    da Silva, Andre Tavares
    Torres, Ricardo da Silva
    Falcao, Alexandre Xavier
    Magalhaes, Leo P.
    Lamparelli, Rubens A. C.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 14TH INTERNATIONAL CONFERENCE, CAIP 2011, PT 2, 2011, 6855 : 300 - 307
  • [29] LAND USE IMAGE CLASSIFICATION THROUGH OPTIMUM-PATH FOREST CLUSTERING
    Pisani, R.
    Riedel, P.
    Ferreira, M.
    Marques, M.
    Mizobe, R.
    Papa, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 826 - 829
  • [30] Safe semi-supervised learning for pattern classification
    Ma, Jun
    Yu, Guolin
    Xiong, Weizhi
    Zhu, Xiaolong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121