NONPARAMETRIC INFERENCE IN GENERALIZED FUNCTIONAL LINEAR MODELS

被引:27
|
作者
Shang, Zuofeng [1 ]
Cheng, Guang [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47906 USA
来源
ANNALS OF STATISTICS | 2015年 / 43卷 / 04期
关键词
Generalized functional linear models; minimax adaptive test; nonparametric inference; reproducing kernel Hilbert space; roughness regularization; INTEGRODIFFERENTIAL EQUATIONS; EXPONENTIAL-FAMILIES; REGRESSION PROBLEMS; CORRELATED ERRORS; LONGITUDINAL DATA; LIKELIHOOD RATIO; GREENS-FUNCTION; CONVERGENCE; PREDICTION; MINIMAX;
D O I
10.1214/15-AOS1322
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a roughness regularization approach in making nonparametric inference for generalized functional linear models. In a reproducing kernel Hilbert space framework, we construct asymptotically valid confidence intervals for regression mean, prediction intervals for future response and various statistical procedures for hypothesis testing. In particular, one procedure for testing global behaviors of the slope function is adaptive to the smoothness of the slope function and to the structure of the predictors. As a by-product, a new type of Wilks phenomenon [Ann. Math. Stat. 9 (1938) 60-62; Ann. Statist. 29 (2001) 153-193] is discovered when testing the functional linear models. Despite the generality, our inference procedures are easy to implement. Numerical examples are provided to demonstrate the empirical advantages over the competing methods. A collection of technical tools such as integro-differential equation techniques [Trans. Amer Math. Soc. (1927) 29 755-800; Trans. Amer. Math. Soc. (1928) 30 453-471; Trans. Amer Math. Soc. (1930) 32 860-868], Stein's method [Ann. Statist. 41 (2013) 2786- 2819] [Stein, Approximate Computation of Expectations (1986) IMS] and functional Bahadur representation [Ann. Statist. 41 (2013) 2608-2638] are employed in this paper.
引用
收藏
页码:1742 / 1773
页数:32
相关论文
共 50 条
  • [41] Unified Bayesian Inference Framework for Generalized Linear Models
    Meng, Xiangming
    Wu, Sheng
    Zhu, Jiang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 398 - 402
  • [42] Generalized inference for a class of linear models under heteroscedasticity
    Xiong, Shifeng
    Mu, Weiyan
    Xu, Xingzhong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (08) : 1225 - 1236
  • [43] Restricted likelihood inference for generalized linear mixed models
    Ruggero Bellio
    Alessandra R. Brazzale
    [J]. Statistics and Computing, 2011, 21 : 173 - 183
  • [44] Differentially Private Bayesian Inference for Generalized Linear Models
    Kulkarni, Tejas
    Jalko, Joonas
    Koskela, Antti
    Kaski, Samuel
    Honkela, Antti
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [45] Extending the Linear Model With R: Generalized Linear, Mixed Effects and Nonparametric Regression Models
    Miyazaki, Yasuo
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2011, 35 (04) : 330 - 333
  • [46] Nonparametric estimation of mean and dispersion functions in extended generalized linear models
    Gijbels, I.
    Prosdocimi, I.
    Claeskens, G.
    [J]. TEST, 2010, 19 (03) : 580 - 608
  • [47] Nonparametric estimation of mean and dispersion functions in extended generalized linear models
    I. Gijbels
    I. Prosdocimi
    G. Claeskens
    [J]. TEST, 2010, 19 : 580 - 608
  • [48] Semiparametric Bayesian inference on generalized linear measurement error models
    Nian-Sheng Tang
    De-Wang Li
    An-Min Tang
    [J]. Statistical Papers, 2017, 58 : 1091 - 1113
  • [49] Empirical likelihood inference for generalized additive partially linear models
    Liu, Rong
    Zhao, Yichuan
    [J]. TEST, 2021, 30 (03) : 569 - 585
  • [50] A sequential reduction method for inference in generalized linear mixed models
    Ogden, Helen E.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 135 - 152