Restricted likelihood inference for generalized linear mixed models

被引:0
|
作者
Ruggero Bellio
Alessandra R. Brazzale
机构
[1] Università di Udine,Dipartimento di Scienze Statistiche
[2] Università di Modena e Reggio Emilia,Dipartimento di Scienze Sociali, Cognitive e Quantitative
[3] Consiglio Nazionale delle Ricerche,Istituto di Ingegneria Biomedica
来源
Statistics and Computing | 2011年 / 21卷
关键词
Logistic regression; Loglinear model; Maximum likelihood estimation; Modified profile likelihood; Numerical integration; Two-part model; Variance component;
D O I
暂无
中图分类号
学科分类号
摘要
We aim to promote the use of the modified profile likelihood function for estimating the variance parameters of a GLMM in analogy to the REML criterion for linear mixed models. Our approach is based on both quasi-Monte Carlo integration and numerical quadrature, obtaining in either case simulation-free inferential results. We will illustrate our idea by applying it to regression models with binary responses or count data and independent clusters, covering also the case of two-part models. Two real data examples and three simulation studies support the use of the proposed solution as a natural extension of REML for GLMMs. An R package implementing the methodology is available online.
引用
收藏
页码:173 / 183
页数:10
相关论文
共 50 条