Differentially Private Bayesian Inference for Generalized Linear Models

被引:0
|
作者
Kulkarni, Tejas [1 ]
Jalko, Joonas [1 ]
Koskela, Antti [2 ]
Kaski, Samuel [1 ,3 ]
Honkela, Antti [2 ]
机构
[1] Aalto Univ, Helsinki Inst Informat Technol HIIT, Dept Comp Sci, Helsinki, Finland
[2] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, Helsinki, Finland
[3] Univ Manchester, Dept Comp Sci, Manchester, Lancs, England
基金
芬兰科学院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized linear models (GLMs) such as logistic regression are among the most widely used arms in data analyst's repertoire and often used on sensitive datasets. A large body of prior works that investigate GLMs under differential privacy (DP) constraints provide only private point estimates of the regression coefficients, and are not able to quantify parameter uncertainty. In this work, with logistic and Poisson regression as running examples, we introduce a generic noise-aware DP Bayesian inference method for a GLM at hand, given a noisy sum of summary statistics. Quantifying uncertainty allows us to determine which of the regression coefficients are statistically significantly different from zero. We provide a tight privacy analysis and experimentally demonstrate that the posteriors obtained from our model, while adhering to strong privacy guarantees, are close to the non-private posteriors.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Differentially Private Generalized Linear Models Revisited
    Arora, Raman
    Bassily, Raef
    Guzman, Cristobal
    Menart, Michael
    Ullah, Enayat
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [2] Bayesian inference for generalized linear mixed models
    Fong, Youyi
    Rue, Havard
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2010, 11 (03) : 397 - 412
  • [3] Bayesian inference for sparse generalized linear models
    Seeger, Matthias
    Gerwinn, Sebastian
    Bethge, Matthias
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 298 - +
  • [4] Bayesian inference for generalized linear models for spiking neurons
    Gerwinn, Sebastian
    Macke, Jakob H.
    Bethge, Matthias
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [5] Unified Bayesian Inference Framework for Generalized Linear Models
    Meng, Xiangming
    Wu, Sheng
    Zhu, Jiang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 398 - 402
  • [6] Differentially Private Bayesian Inference for Exponential Families
    Bernstein, Garrett
    Sheldon, Daniel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models
    Eidsvik, Jo
    Martino, Sara
    Rue, Havard
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (01) : 1 - 22
  • [8] Semiparametric Bayesian inference on generalized linear measurement error models
    Nian-Sheng Tang
    De-Wang Li
    An-Min Tang
    [J]. Statistical Papers, 2017, 58 : 1091 - 1113
  • [9] Bayesian Inference on Hierarchical Nonlocal Priors in Generalized Linear Models
    Cao, Xuan
    Lee, Kyoungjae
    [J]. BAYESIAN ANALYSIS, 2024, 19 (01): : 99 - 122
  • [10] Semiparametric Bayesian inference on generalized linear measurement error models
    Tang, Nian-Sheng
    Li, De-Wang
    Tang, An-Min
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1091 - 1113