Bayesian inference for sparse generalized linear models

被引:0
|
作者
Seeger, Matthias [1 ]
Gerwinn, Sebastian [1 ]
Bethge, Matthias [1 ]
机构
[1] Max Planck Inst Biol Cybernet, Spemannstr 38, Tubingen, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (QLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties such as sparsity or non-negativity. The central role of posterior log-concavity in Bayesian GLMs is emphasized and related to stability issues in EP. In particular, we use our technique to infer the parameters of a point process model for neuronal spiking data from multiple electrodes, demonstrating significantly superior predictive performance when a sparsity assumption is enforced via a Laplace prior distribution.
引用
收藏
页码:298 / +
页数:3
相关论文
共 50 条
  • [1] Bayesian inference for generalized linear mixed models
    Fong, Youyi
    Rue, Havard
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2010, 11 (03) : 397 - 412
  • [2] Bayesian inference for generalized linear models for spiking neurons
    Gerwinn, Sebastian
    Macke, Jakob H.
    Bethge, Matthias
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [3] Unified Bayesian Inference Framework for Generalized Linear Models
    Meng, Xiangming
    Wu, Sheng
    Zhu, Jiang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 398 - 402
  • [4] Differentially Private Bayesian Inference for Generalized Linear Models
    Kulkarni, Tejas
    Jalko, Joonas
    Koskela, Antti
    Kaski, Samuel
    Honkela, Antti
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models
    Eidsvik, Jo
    Martino, Sara
    Rue, Havard
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (01) : 1 - 22
  • [6] Sparse Bayesian Regression for Grouped Variables in Generalized Linear Models
    Raman, Sudhir
    Roth, Volker
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 242 - 251
  • [7] Semiparametric Bayesian inference on generalized linear measurement error models
    Nian-Sheng Tang
    De-Wang Li
    An-Min Tang
    [J]. Statistical Papers, 2017, 58 : 1091 - 1113
  • [8] Bayesian Inference on Hierarchical Nonlocal Priors in Generalized Linear Models
    Cao, Xuan
    Lee, Kyoungjae
    [J]. BAYESIAN ANALYSIS, 2024, 19 (01): : 99 - 122
  • [9] Semiparametric Bayesian inference on generalized linear measurement error models
    Tang, Nian-Sheng
    Li, De-Wang
    Tang, An-Min
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1091 - 1113
  • [10] Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models
    Seeger, Matthias W.
    Nickisch, Hannes
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01): : 166 - 199