Bayesian inference for sparse generalized linear models

被引:0
|
作者
Seeger, Matthias [1 ]
Gerwinn, Sebastian [1 ]
Bethge, Matthias [1 ]
机构
[1] Max Planck Inst Biol Cybernet, Spemannstr 38, Tubingen, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (QLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties such as sparsity or non-negativity. The central role of posterior log-concavity in Bayesian GLMs is emphasized and related to stability issues in EP. In particular, we use our technique to infer the parameters of a point process model for neuronal spiking data from multiple electrodes, demonstrating significantly superior predictive performance when a sparsity assumption is enforced via a Laplace prior distribution.
引用
收藏
页码:298 / +
页数:3
相关论文
共 50 条
  • [21] Bayesian inference for generalized linear model with linear inequality constraints
    Ghosal, Rahul
    Ghosh, Sujit K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 166
  • [22] Robust Inference in Generalized Linear Models
    Alqallaf, Fatemah
    Agostinelli, Claudio
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3053 - 3073
  • [23] Robust inference for generalized linear models
    Cantoni, E
    Ronchetti, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 1022 - 1030
  • [24] Bayesian inference for generalized linear mixed models: A comparison of different statstical software procedures
    Yimer, Belay Birlie
    Shkedy, Ziv
    [J]. COGENT MATHEMATICS & STATISTICS, 2021, 8
  • [25] BAYESIAN-INFERENCE FOR GENERALIZED LINEAR AND PROPORTIONAL HAZARDS MODELS VIA GIBBS SAMPLING
    DELLAPORTAS, P
    SMITH, AFM
    [J]. APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1993, 42 (03): : 443 - 459
  • [26] Bayesian treed generalized linear models
    Chipman, HA
    George, EI
    McCulloch, RE
    [J]. BAYESIAN STATISTICS 7, 2003, : 85 - 103
  • [27] Distributed Bayesian Piecewise Sparse Linear Models
    Asahara, Masato
    Fujimaki, Ryohei
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 883 - 888
  • [28] High precision variational Bayesian inference of sparse linear networks
    Jin, Junyang
    Yuan, Ye
    Goncalves, Jorge
    [J]. AUTOMATICA, 2020, 118
  • [29] Sparse Variational Inference for Generalized Gaussian Process Models
    Sheth, Rishit
    Wang, Yuyang
    Khardon, Roni
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1302 - 1311
  • [30] Bayesian Generalized Horseshoe Estimation of Generalized Linear Models
    Schmidt, Daniel F.
    Makalic, Enes
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 598 - 613