Semiparametric Bayesian inference on generalized linear measurement error models

被引:0
|
作者
Nian-Sheng Tang
De-Wang Li
An-Min Tang
机构
[1] Yunnan University,Department of Statistics
来源
Statistical Papers | 2017年 / 58卷
关键词
Cook’s distance; Dirichlet process prior; Generalized linear models; Kullback–Leibler divergence; Measurement error models;
D O I
暂无
中图分类号
学科分类号
摘要
The classical assumption in generalized linear measurement error models (GLMEMs) is that measurement errors (MEs) for covariates are distributed as a fully parametric distribution such as the multivariate normal distribution. This paper uses a centered Dirichlet process mixture model to relax the fully parametric distributional assumption of MEs, and develops a semiparametric Bayesian approach to simultaneously obtain Bayesian estimations of parameters and covariates subject to MEs by combining the stick-breaking prior and the Gibbs sampler together with the Metropolis–Hastings algorithm. Two Bayesian case-deletion diagnostics are proposed to identify influential observations in GLMEMs via the Kullback–Leibler divergence and Cook’s distance. Computationally feasible formulae for evaluating Bayesian case-deletion diagnostics are presented. Several simulation studies and a real example are used to illustrate our proposed methodologies.
引用
收藏
页码:1091 / 1113
页数:22
相关论文
共 50 条
  • [1] Semiparametric Bayesian inference on generalized linear measurement error models
    Tang, Nian-Sheng
    Li, De-Wang
    Tang, An-Min
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1091 - 1113
  • [2] Semiparametric Bayesian Estimation of Measurement Error Models
    Li, Dewang
    [J]. 2016 INTERNATIONAL CONFERENCE ON MECHANICAL MANUFACTURING AND ENERGY ENGINEERING (ICMMEE 2016), 2016, : 21 - 25
  • [3] Likelihood inference in generalized linear mixed measurement error models
    Torabi, Mahmoud
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 549 - 557
  • [4] Bayesian Semiparametric Inference on Functional Relationships in Linear Mixed Models
    Jeong, Seonghyun
    Park, Taeyoung
    [J]. BAYESIAN ANALYSIS, 2016, 11 (04): : 1137 - 1163
  • [5] Bayesian inference for generalized linear mixed models
    Fong, Youyi
    Rue, Havard
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2010, 11 (03) : 397 - 412
  • [6] Bayesian inference for sparse generalized linear models
    Seeger, Matthias
    Gerwinn, Sebastian
    Bethge, Matthias
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 298 - +
  • [7] Bayesian semiparametric models for nonignorable missing mechanisms in generalized linear models
    Kalaylioglu, Z. I.
    Ozturk, O.
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (08) : 1746 - 1763
  • [9] Adaptive Bayesian regression splines in semiparametric generalized linear models
    Biller, C
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (01) : 122 - 140
  • [10] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734