Differentially Private Bayesian Inference for Generalized Linear Models

被引:0
|
作者
Kulkarni, Tejas [1 ]
Jalko, Joonas [1 ]
Koskela, Antti [2 ]
Kaski, Samuel [1 ,3 ]
Honkela, Antti [2 ]
机构
[1] Aalto Univ, Helsinki Inst Informat Technol HIIT, Dept Comp Sci, Helsinki, Finland
[2] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, Helsinki, Finland
[3] Univ Manchester, Dept Comp Sci, Manchester, Lancs, England
基金
芬兰科学院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized linear models (GLMs) such as logistic regression are among the most widely used arms in data analyst's repertoire and often used on sensitive datasets. A large body of prior works that investigate GLMs under differential privacy (DP) constraints provide only private point estimates of the regression coefficients, and are not able to quantify parameter uncertainty. In this work, with logistic and Poisson regression as running examples, we introduce a generic noise-aware DP Bayesian inference method for a GLM at hand, given a noisy sum of summary statistics. Quantifying uncertainty allows us to determine which of the regression coefficients are statistically significantly different from zero. We provide a tight privacy analysis and experimentally demonstrate that the posteriors obtained from our model, while adhering to strong privacy guarantees, are close to the non-private posteriors.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Robust inference for generalized linear models
    Cantoni, E
    Ronchetti, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 1022 - 1030
  • [22] Bayesian inference for generalized linear mixed models: A comparison of different statstical software procedures
    Yimer, Belay Birlie
    Shkedy, Ziv
    [J]. COGENT MATHEMATICS & STATISTICS, 2021, 8
  • [23] BAYESIAN-INFERENCE FOR GENERALIZED LINEAR AND PROPORTIONAL HAZARDS MODELS VIA GIBBS SAMPLING
    DELLAPORTAS, P
    SMITH, AFM
    [J]. APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1993, 42 (03): : 443 - 459
  • [24] Bayesian Inference for Estimating Subset Proportions using Differentially Private Counts
    Li, Linlin
    Reiter, Jerome P.
    [J]. JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2022, 10 (03) : 785 - 803
  • [25] Bayesian treed generalized linear models
    Chipman, HA
    George, EI
    McCulloch, RE
    [J]. BAYESIAN STATISTICS 7, 2003, : 85 - 103
  • [26] Differentially Private Variational Inference for Non-conjugate Models
    Jalko, Joonas
    Dikmen, Onur
    Honkela, Antti
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [27] Bayesian Generalized Horseshoe Estimation of Generalized Linear Models
    Schmidt, Daniel F.
    Makalic, Enes
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 598 - 613
  • [28] Variational Bayesian Inference for Point Process Generalized Linear Models in Neural Spike Trains Analysis
    Chen, Zhe
    Kloosterman, Fabian
    Wilson, Matthew A.
    Brown, Emery N.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2086 - 2089
  • [29] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [30] Improved likelihood inference in generalized linear models
    Vargas, Tiago M.
    Ferrari, Silvia L. P.
    Lemonte, Artur J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 110 - 124