Differentially Private Bayesian Inference for Exponential Families

被引:0
|
作者
Bernstein, Garrett [1 ]
Sheldon, Daniel [1 ]
机构
[1] Univ Massachusetts Amherst, Coll Informat & Comp Sci, Amherst, MA 01002 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The study of private inference has been sparked by growing concern regarding the analysis of data when it stems from sensitive sources. We present the first method for private Bayesian inference in exponential families that properly accounts for noise introduced by the privacy mechanism. It is efficient because it works only with sufficient statistics and not individual data. Unlike other methods, it gives properly calibrated posterior beliefs in the non-asymptotic data regime.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Stability of Bayesian inference in exponential families
    Boratynska, A
    [J]. STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) : 173 - 178
  • [2] Nonparametric Bayesian inference on multivariate exponential families
    Vega-Brown, William
    Doniec, Marek
    Roy, Nicholas
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [3] Differentially Private Bayesian Inference for Generalized Linear Models
    Kulkarni, Tejas
    Jalko, Joonas
    Koskela, Antti
    Kaski, Samuel
    Honkela, Antti
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [4] Bayesian Inference for Estimating Subset Proportions using Differentially Private Counts
    Li, Linlin
    Reiter, Jerome P.
    [J]. JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2022, 10 (03) : 785 - 803
  • [5] Differentially Private Bayesian Programming
    Barthe, Gilles
    Farina, Gian Pietro
    Gaboardi, Marco
    Arias, Emilio Jesus Gallego
    Gordon, Andy
    Hsu, Justin
    Strub, Pierre-Yves
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 68 - 79
  • [6] Differentially Private Bayesian Optimization
    Kusner, Matt J.
    Gardner, Jacob R.
    Garnett, Roman
    Weinberger, Kilian Q.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 918 - 927
  • [7] Robust and Private Bayesian Inference
    Dimitrakakis, Christos
    Nelson, Blaine
    Mitrokotsa, Aikaterini
    Rubinstein, Benjamin I. P.
    [J]. ALGORITHMIC LEARNING THEORY (ALT 2014), 2014, 8776 : 291 - 305
  • [8] Differentially Private Exponential Random Graphs
    Karwa, Vishesh
    Slavkovic, Aleksandra B.
    Krivitsky, Pavel
    [J]. PRIVACY IN STATISTICAL DATABASES, PSD 2014, 2014, 8744 : 143 - 155
  • [9] Bayesian inference for the generalized exponential distribution
    Raqab, MZ
    Madi, MT
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (10) : 841 - 852
  • [10] Differentially Private Synthesis and Sharing of Network Data Via Bayesian Exponential Random Graph Models
    Liu, Fang
    Eugenio, Evercita C.
    Jin, Ick Hoon
    Bowen, Claire Mckay
    [J]. JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2022, 10 (03) : 753 - 784