NONPARAMETRIC INFERENCE IN GENERALIZED FUNCTIONAL LINEAR MODELS

被引:27
|
作者
Shang, Zuofeng [1 ]
Cheng, Guang [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47906 USA
来源
ANNALS OF STATISTICS | 2015年 / 43卷 / 04期
关键词
Generalized functional linear models; minimax adaptive test; nonparametric inference; reproducing kernel Hilbert space; roughness regularization; INTEGRODIFFERENTIAL EQUATIONS; EXPONENTIAL-FAMILIES; REGRESSION PROBLEMS; CORRELATED ERRORS; LONGITUDINAL DATA; LIKELIHOOD RATIO; GREENS-FUNCTION; CONVERGENCE; PREDICTION; MINIMAX;
D O I
10.1214/15-AOS1322
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a roughness regularization approach in making nonparametric inference for generalized functional linear models. In a reproducing kernel Hilbert space framework, we construct asymptotically valid confidence intervals for regression mean, prediction intervals for future response and various statistical procedures for hypothesis testing. In particular, one procedure for testing global behaviors of the slope function is adaptive to the smoothness of the slope function and to the structure of the predictors. As a by-product, a new type of Wilks phenomenon [Ann. Math. Stat. 9 (1938) 60-62; Ann. Statist. 29 (2001) 153-193] is discovered when testing the functional linear models. Despite the generality, our inference procedures are easy to implement. Numerical examples are provided to demonstrate the empirical advantages over the competing methods. A collection of technical tools such as integro-differential equation techniques [Trans. Amer Math. Soc. (1927) 29 755-800; Trans. Amer. Math. Soc. (1928) 30 453-471; Trans. Amer Math. Soc. (1930) 32 860-868], Stein's method [Ann. Statist. 41 (2013) 2786- 2819] [Stein, Approximate Computation of Expectations (1986) IMS] and functional Bahadur representation [Ann. Statist. 41 (2013) 2608-2638] are employed in this paper.
引用
收藏
页码:1742 / 1773
页数:32
相关论文
共 50 条
  • [21] Local inference for functional linear mixed models
    Pini, Alessia
    Sorensen, Helle
    Tolver, Anders
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 181
  • [22] ASYMPTOTICALLY NONPARAMETRIC-INFERENCE - AN ALTERNATIVE APPROACH TO LINEAR-MODELS
    LEHMANN, EL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (04): : 1494 - +
  • [23] Robust inference in generalized linear models for longitudinal data
    Sinha, Sanjoy K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (02): : 261 - 278
  • [24] Statistical inference in generalized linear mixed models: A review
    Tuerlinckx, Francis
    Rijmen, Frank
    Verbeke, Geert
    De Boeck, Paul
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2006, 59 : 225 - 255
  • [25] Dependent generalized functional linear models
    Jadhav, S.
    Koul, H. L.
    Lu, Q.
    [J]. BIOMETRIKA, 2017, 104 (04) : 987 - 994
  • [26] Generalized linear models with functional predictors
    James, GM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 411 - 432
  • [27] Inference in generalized linear regression models with a censored covariate
    Tsimikas, John V.
    Bantis, Leonidas E.
    Georgiou, Stelios D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1854 - 1868
  • [28] Conditional inference about generalized linear mixed models
    Jiang, JM
    [J]. ANNALS OF STATISTICS, 1999, 27 (06): : 1974 - 2007
  • [29] On Bias Reduction in Robust Inference for Generalized Linear Models
    Bari, Wasimul
    Sutradhar, Brajendra C.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (01) : 109 - 125
  • [30] Statistical inference for generalized additive partially linear models
    Liu, Rong
    Haerdie, Wolfgang K.
    Zhang, Guoyi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 162 : 1 - 15