NONPARAMETRIC INFERENCE IN GENERALIZED FUNCTIONAL LINEAR MODELS

被引:27
|
作者
Shang, Zuofeng [1 ]
Cheng, Guang [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47906 USA
来源
ANNALS OF STATISTICS | 2015年 / 43卷 / 04期
关键词
Generalized functional linear models; minimax adaptive test; nonparametric inference; reproducing kernel Hilbert space; roughness regularization; INTEGRODIFFERENTIAL EQUATIONS; EXPONENTIAL-FAMILIES; REGRESSION PROBLEMS; CORRELATED ERRORS; LONGITUDINAL DATA; LIKELIHOOD RATIO; GREENS-FUNCTION; CONVERGENCE; PREDICTION; MINIMAX;
D O I
10.1214/15-AOS1322
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a roughness regularization approach in making nonparametric inference for generalized functional linear models. In a reproducing kernel Hilbert space framework, we construct asymptotically valid confidence intervals for regression mean, prediction intervals for future response and various statistical procedures for hypothesis testing. In particular, one procedure for testing global behaviors of the slope function is adaptive to the smoothness of the slope function and to the structure of the predictors. As a by-product, a new type of Wilks phenomenon [Ann. Math. Stat. 9 (1938) 60-62; Ann. Statist. 29 (2001) 153-193] is discovered when testing the functional linear models. Despite the generality, our inference procedures are easy to implement. Numerical examples are provided to demonstrate the empirical advantages over the competing methods. A collection of technical tools such as integro-differential equation techniques [Trans. Amer Math. Soc. (1927) 29 755-800; Trans. Amer. Math. Soc. (1928) 30 453-471; Trans. Amer Math. Soc. (1930) 32 860-868], Stein's method [Ann. Statist. 41 (2013) 2786- 2819] [Stein, Approximate Computation of Expectations (1986) IMS] and functional Bahadur representation [Ann. Statist. 41 (2013) 2608-2638] are employed in this paper.
引用
收藏
页码:1742 / 1773
页数:32
相关论文
共 50 条
  • [1] NONPARAMETRIC INFERENCE FOR THE REPRODUCTIVE RATE IN GENERALIZED COMPARTMENTAL MODELS*
    Trejo, Imelda
    Lin, Yen Ting
    Patrick, Amanda
    Hengartner, Nicolas
    [J]. SIAM Journal on Applied Mathematics, 2024, 84 (03)
  • [2] Robust Inference in Generalized Linear Models
    Alqallaf, Fatemah
    Agostinelli, Claudio
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3053 - 3073
  • [3] Robust inference for generalized linear models
    Cantoni, E
    Ronchetti, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 1022 - 1030
  • [4] Asymptotic equivalence for nonparametric generalized linear models
    Ion Grama
    Michael Nussbaum
    [J]. Probability Theory and Related Fields, 1998, 111 : 167 - 214
  • [5] Asymptotic equivalence for nonparametric generalized linear models
    Grama, I
    Nussbaum, M
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (02) : 167 - 214
  • [6] Bayesian Nonparametric Inference of Switching Dynamic Linear Models
    Fox, Emily
    Sudderth, Erik B.
    Jordan, Michael I.
    Willsky, Alan S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) : 1569 - 1585
  • [7] Generalized functional linear models
    Müller, HG
    Stadtmüller, U
    [J]. ANNALS OF STATISTICS, 2005, 33 (02): : 774 - 805
  • [8] INFERENCE FOR GENERALIZED PARTIAL FUNCTIONAL LINEAR REGRESSION
    Li, Ting
    Zhu, Zhongyi
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1379 - 1397
  • [9] Robust inference in generalized partially linear models
    Boente, Graciela
    Rodriguez, Daniela
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 2942 - 2966
  • [10] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25