Asymptotic equivalence for nonparametric generalized linear models

被引:0
|
作者
Ion Grama
Michael Nussbaum
机构
[1] Institute of Mathematics,
[2] Academy of Sciences,undefined
[3] Academiei Str. 5,undefined
[4] Chişinău 277028,undefined
[5] Moldova e-mail: 16grama@mathem.moldova.su,undefined
[6] Weierstrass Institute,undefined
[7] Mohrenstr. 39,undefined
[8] D-10117 Berlin,undefined
[9] Germany e-mail: nussbaum@wias-berlin.de,undefined
来源
关键词
Mathematics Subject Classification (1991): Primary 62B15; Secondary 62G07; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
We establish that a non-Gaussian nonparametric regression model is asymptotically equivalent to a regression model with Gaussian noise. The approximation is in the sense of Le Cam's deficiency distance Δ; the models are then asymptotically equivalent for all purposes of statistical decision with bounded loss. Our result concerns a sequence of independent but not identically distributed observations with each distribution in the same real-indexed exponential family. The canonical parameter is a value f(ti) of a regression function f at a grid point ti (nonparametric GLM). When f is in a Hölder ball with exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} we establish global asymptotic equivalence to observations of a signal Γ(f(t)) in Gaussian white noise, where Γ is related to a variance stabilizing transformation in the exponential family. The result is a regression analog of the recently established Gaussian approximation for the i.i.d. model. The proof is based on a functional version of the Hungarian construction for the partial sum process.
引用
收藏
页码:167 / 214
页数:47
相关论文
共 50 条