Bayesian Nonparametric Inference of Switching Dynamic Linear Models

被引:152
|
作者
Fox, Emily [1 ]
Sudderth, Erik B. [2 ]
Jordan, Michael I. [3 ,4 ]
Willsky, Alan S. [5 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Autoregressive processes; Bayesian methods; hidden Markov models; state-space methods; time series analysis; unsupervised learning; HIDDEN MARKOV-MODELS; CHAIN MONTE-CARLO; STATE-SPACE MODELS; IDENTIFICATION; SYSTEMS; DIMENSION; TUTORIAL; MOTION; PRIORS;
D O I
10.1109/TSP.2010.2102756
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many complex dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our Bayesian nonparametric approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We additionally employ automatic relevance determination to infer a sparse set of dynamic dependencies allowing us to learn SLDS with varying state dimension or switching VAR processes with varying autoregressive order. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, the IBOVESPA stock index and a maneuvering target tracking application.
引用
收藏
页码:1569 / 1585
页数:17
相关论文
共 50 条