Robust inference in generalized partially linear models

被引:14
|
作者
Boente, Graciela [1 ]
Rodriguez, Daniela
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Buenos Aires, DF, Argentina
关键词
Asymptotic properties; Generalized partly linear models; Rate of convergence; Robust estimation; Smoothing techniques; Tests; REGRESSION-MODELS; LIKELIHOOD;
D O I
10.1016/j.csda.2010.05.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function eta, associated to the nonparametric component, and for the parameter beta, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter beta and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of beta turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2942 / 2966
页数:25
相关论文
共 50 条
  • [1] Robust Inference in Generalized Linear Models
    Alqallaf, Fatemah
    Agostinelli, Claudio
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (09) : 3053 - 3073
  • [2] Robust inference for generalized linear models
    Cantoni, E
    Ronchetti, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 1022 - 1030
  • [3] Robust and accurate inference for generalized linear models
    Lo, Serigne N.
    Ronchetti, Elvezio
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (09) : 2126 - 2136
  • [4] Robust estimates in generalized partially linear models
    Boente, Graciela
    He, Xuming
    Zhou, Jianhui
    [J]. ANNALS OF STATISTICS, 2006, 34 (06): : 2856 - 2878
  • [5] Robust Inference for Mediated Effects in Partially Linear Models
    Hines, Oliver
    Vansteelandt, Stijn
    Diaz-Ordaz, Karla
    [J]. PSYCHOMETRIKA, 2021, 86 (02) : 595 - 618
  • [6] Statistical inference for generalized additive partially linear models
    Liu, Rong
    Haerdie, Wolfgang K.
    Zhang, Guoyi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 162 : 1 - 15
  • [7] Robust Inference for Mediated Effects in Partially Linear Models
    Oliver Hines
    Stijn Vansteelandt
    Karla Diaz-Ordaz
    [J]. Psychometrika, 2021, 86 : 595 - 618
  • [8] Robust inference in partially linear models with missing responses
    Bianco, Ana M.
    Boente, Graciela
    Gonzalez-Manteiga, Wenceslao
    Perez-Gonzalez, Ana
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 97 : 88 - 98
  • [9] Robust inference in generalized linear models for longitudinal data
    Sinha, Sanjoy K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (02): : 261 - 278
  • [10] On Bias Reduction in Robust Inference for Generalized Linear Models
    Bari, Wasimul
    Sutradhar, Brajendra C.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (01) : 109 - 125