Robust inference in generalized partially linear models

被引:14
|
作者
Boente, Graciela [1 ]
Rodriguez, Daniela
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Buenos Aires, DF, Argentina
关键词
Asymptotic properties; Generalized partly linear models; Rate of convergence; Robust estimation; Smoothing techniques; Tests; REGRESSION-MODELS; LIKELIHOOD;
D O I
10.1016/j.csda.2010.05.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function eta, associated to the nonparametric component, and for the parameter beta, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter beta and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of beta turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robust Wald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2942 / 2966
页数:25
相关论文
共 50 条
  • [31] Robust estimators for generalized linear models
    Valdora, Marina
    Yohai, Victor J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 146 : 31 - 48
  • [32] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [33] Improved likelihood inference in generalized linear models
    Vargas, Tiago M.
    Ferrari, Silvia L. P.
    Lemonte, Artur J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 110 - 124
  • [34] NONPARAMETRIC INFERENCE IN GENERALIZED FUNCTIONAL LINEAR MODELS
    Shang, Zuofeng
    Cheng, Guang
    [J]. ANNALS OF STATISTICS, 2015, 43 (04): : 1742 - 1773
  • [35] Bayesian inference for generalized linear mixed models
    Fong, Youyi
    Rue, Havard
    Wakefield, Jon
    [J]. BIOSTATISTICS, 2010, 11 (03) : 397 - 412
  • [36] Bayesian inference for sparse generalized linear models
    Seeger, Matthias
    Gerwinn, Sebastian
    Bethge, Matthias
    [J]. MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 298 - +
  • [37] INFERENCE ON COLLAPSIBILITY IN GENERALIZED LINEAR-MODELS
    GREENLAND, S
    MALDONADO, G
    [J]. BIOMETRICAL JOURNAL, 1994, 36 (07) : 771 - 782
  • [38] Model checking for generalized partially linear models
    Li, Xinmin
    Liang, Haozhe
    Haerdle, Wolfgang
    Liang, Hua
    [J]. TEST, 2024, 33 (02) : 361 - 378
  • [39] Estimation and inference in partially linear models with smoothing splines
    Schimek, MG
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 91 (02) : 525 - 540
  • [40] Statistical inference for multivariate partially linear regression models
    You, Jinhong
    Zhou, Yong
    Chen, Gemai
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (01): : 1 - 22