Random walk hitting times and effective resistance in sparsely connected Erdos-Renyi random graphs

被引:3
|
作者
Sylvester, John [1 ,2 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
effective resistance; hitting time; kirchoff index; random graph; random walk; COVER TIME; COMMUTE;
D O I
10.1002/jgt.22551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a bound on the effective resistance R ( x , y ) between two vertices x , y of a connected graph which contains a suitably well-connected subgraph. We apply this bound to the Erdos-Renyi random graph G ( n , p ) with n p = omega ( log n ), proving that R ( x , y ) concentrates around 1 / d ( x ) + 1 / d ( y ), that is, the sum of reciprocal degrees. We also prove expectation and concentration results for the random walk hitting times, Kirchoff index, cover cost, and the random target time (Kemeny's constant) on G ( n , p ) in the sparsely connected regime log n + log log log n <= n p < n 1 / 10.
引用
收藏
页码:44 / 84
页数:41
相关论文
共 50 条
  • [31] The importance sampling technique for understanding rare events in Erdos-Renyi random graphs
    Bhamidi, Shankar
    Hannig, Jan
    Lee, Chia Ying
    Nolen, James
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
  • [32] Graph matching beyond perfectly-overlapping Erdos-Renyi random graphs
    Hu, Yaofang
    Wang, Wanjie
    Yu, Yi
    STATISTICS AND COMPUTING, 2022, 32 (01)
  • [33] Phase Transition in Inhomogenous Erdos-Renyi Random Graphs via Tree Counting
    Ganesan, Ghurumuruhan
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2018, 80 (01): : 1 - 27
  • [34] Intelligibility of Erdos-Renyi Random Graphs and Time Varying Social Network Modeling
    Hamlili, Ali
    2017 INTERNATIONAL CONFERENCE ON SMART DIGITAL ENVIRONMENT (ICSDE'17), 2017, : 201 - 206
  • [35] Dynamic Single-Source Shortest Paths in Erdos-Renyi Random Graphs
    Ding, Wei
    Qiu, Ke
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 537 - 550
  • [36] Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdos-Renyi Random Graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2413 - 2441
  • [37] Finite-size corrections to disordered systems on Erdos-Renyi random graphs
    Ferrari, U.
    Lucibello, C.
    Morone, F.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    PHYSICAL REVIEW B, 2013, 88 (18)
  • [38] Stable Sets of Threshold-Based Cascades on the Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Lyuu, Yuh-Dauh
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 96 - +
  • [39] First Passage Percolation on the Erdos-Renyi Random Graph
    Bhamidi, Shankar
    Van der Hofstad, Remco
    Hooghiemstra, Gerard
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 683 - 707
  • [40] k-Connectivity in Random K-Out Graphs Intersecting Erdos-Renyi Graphs
    Yavuz, Faruk
    Zhao, Jun
    Yagan, Osman
    Gligor, Virgil
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (03) : 1677 - 1692