Random walk hitting times and effective resistance in sparsely connected Erdos-Renyi random graphs

被引:3
|
作者
Sylvester, John [1 ,2 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
effective resistance; hitting time; kirchoff index; random graph; random walk; COVER TIME; COMMUTE;
D O I
10.1002/jgt.22551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a bound on the effective resistance R ( x , y ) between two vertices x , y of a connected graph which contains a suitably well-connected subgraph. We apply this bound to the Erdos-Renyi random graph G ( n , p ) with n p = omega ( log n ), proving that R ( x , y ) concentrates around 1 / d ( x ) + 1 / d ( y ), that is, the sum of reciprocal degrees. We also prove expectation and concentration results for the random walk hitting times, Kirchoff index, cover cost, and the random target time (Kemeny's constant) on G ( n , p ) in the sparsely connected regime log n + log log log n <= n p < n 1 / 10.
引用
收藏
页码:44 / 84
页数:41
相关论文
共 50 条
  • [21] Spectra of adjacency and Laplacian matrices of inhomogeneous Erdos-Renyi random graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [22] Learning Erdos-Renyi Random Graphs via Edge Detecting Queries
    Li, Zihan
    Fresacher, Matthias
    Scarlett, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] SCALING LIMIT OF DYNAMICAL PERCOLATION ON CRITICAL ERDOS-RENYI RANDOM GRAPHS
    Rossignol, Raphael
    ANNALS OF PROBABILITY, 2021, 49 (01): : 322 - 399
  • [24] Fluctuations of the Magnetization for Ising Models on Dense Erdos-Renyi Random Graphs
    Kabluchko, Zakhar
    Lowe, Matthias
    Schubert, Kristina
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 78 - 94
  • [25] Evolution of tag-based cooperation on Erdos-Renyi random graphs
    Lima, F. W. S.
    Hadzibeganovic, Tarik
    Stauffer, Dietrich
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (06):
  • [26] On Reversible Cascades in Scale-Free and Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Wang, Chao-Hong
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 303 - 318
  • [27] Fluctuations for the partition function of Ising models on Erdos-Renyi random graphs
    Kabluchko, Zakhar
    Loewe, Matthias
    Schubert, Kristina
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2017 - 2042
  • [28] The distribution of first hitting times of randomwalks on Erdos-Renyi networks
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (11)
  • [29] On certain perturbations of the Erdos-Renyi random graph
    Coulomb, S
    Bauer, M
    JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (5-6) : 1251 - 1282
  • [30] A variant of the Erdos-Renyi random graph process
    Logan, Adam
    Molloy, Mike
    Pralat, Pawel
    JOURNAL OF GRAPH THEORY, 2023, 102 (02) : 322 - 345