On Reversible Cascades in Scale-Free and Erdos-Renyi Random Graphs

被引:1
|
作者
Chang, Ching-Lueh [1 ]
Wang, Chao-Hong [1 ]
机构
[1] Yuan Ze Univ, Dept Comp Sci & Engn, Tao Yuan, Taiwan
关键词
Reversible dynamic monopoly; Local interaction game; Repetitive polling game; Static monopoly; Fault propagation; Global cascade; DYNAMIC MONOPOLIES; LOCAL INTERACTION; COALITIONS; POWER;
D O I
10.1007/s00224-012-9387-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider the following cascading process on a simple undirected graph G(V, E) with diameter Delta. In round zero, a set S subset of V of vertices, called the seeds, are active. In round i + 1, i is an element of N, a non-isolated vertex is activated if at least a rho is an element of (0, 1] fraction of its neighbors are active in round i; it is deactivated otherwise. For k is an element of N, let min-seed((k))(G, rho) be the minimum number of seeds needed to activate all vertices in or before round k. This paper derives upper bounds on min-seed((k))(G, rho). In particular, if G is connected and there exist constants C > 0 and. > 2 such that the fraction of degree-k vertices in G is at most C/k(gamma) for all k is an element of Z(+), then min-seed((Delta))(G, rho) = O(inverted right perpendicular rho(gamma-1)vertical bar V vertical bar inverted left perpendicular). Furthermore, for n is an element of Z(+), p = Omega((ln (e/rho))/(rho n)) and with probability 1- exp (-n(Omega(1))) over the Erdos-Renyi random graphs G(n, p), min-seed((1))(G(n, p), rho) = O(rho n).
引用
收藏
页码:303 / 318
页数:16
相关论文
共 50 条
  • [1] Treewidth of Erdos-Renyi random graphs, random intersection graphs, and scale-free random graphs
    Gao, Yong
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 566 - 578
  • [2] Community structure and scale-free collections of Erdos-Renyi graphs
    Seshadhri, C.
    Kolda, Tamara G.
    Pinar, Ali
    [J]. PHYSICAL REVIEW E, 2012, 85 (05)
  • [3] From scale-free to Erdos-Renyi networks
    Gomez-Gardenes, Jesus
    Moreno, Yamir
    [J]. PHYSICAL REVIEW E, 2006, 73 (05):
  • [4] Random sequential renormalization and agglomerative percolation in networks: Application to Erdos-Renyi and scale-free graphs
    Bizhani, Golnoosh
    Grassberger, Peter
    Paczuski, Maya
    [J]. PHYSICAL REVIEW E, 2011, 84 (06)
  • [5] Modularity of Erdos-Renyi random graphs
    McDiarmid, Colin
    Skerman, Fiona
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 211 - 243
  • [6] The Erdos-Renyi theory of random graphs
    Bollobás, B
    [J]. PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [7] Stable Sets of Threshold-Based Cascades on the Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Lyuu, Yuh-Dauh
    [J]. COMBINATORIAL ALGORITHMS, 2011, 7056 : 96 - +
  • [8] Distribution of diameters for Erdos-Renyi random graphs
    Hartmann, A. K.
    Mezard, M.
    [J]. PHYSICAL REVIEW E, 2018, 97 (03)
  • [9] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [10] Changepoint Inference for Erdos-Renyi Random Graphs
    Yudovina, Elena
    Banerjee, Moulinath
    Michailidis, George
    [J]. STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 197 - 205