Modularity of Erdos-Renyi random graphs

被引:19
|
作者
McDiarmid, Colin [1 ]
Skerman, Fiona [2 ,3 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Univ Bristol, Heilbronn Inst Math Res, Bristol, Avon, England
关键词
modularity; community detection; random graphs; robustness;
D O I
10.1002/rsa.20910
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in G. The modularity q*(G) of the graph G is defined to be the maximum over all vertex partitions of the modularity score, and satisfies 0 <= q*(G)G(n,p) with n vertices and edge-probability p. Two key findings are that the modularity is 1+o(1) with high probability (whp) for np up to 1+o(1) and no further; and when np >= 1 and p is bounded below 1, it has order (np)(-1/2) whp, in accord with a conjecture by Reichardt and Bornholdt in 2006. We also show that the modularity of a graph is robust to changes in a few edges, in contrast to the sensitivity of optimal vertex partitions.
引用
收藏
页码:211 / 243
页数:33
相关论文
共 50 条
  • [1] The Erdos-Renyi theory of random graphs
    Bollobás, B
    [J]. PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [2] Distribution of diameters for Erdos-Renyi random graphs
    Hartmann, A. K.
    Mezard, M.
    [J]. PHYSICAL REVIEW E, 2018, 97 (03)
  • [3] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [4] Changepoint Inference for Erdos-Renyi Random Graphs
    Yudovina, Elena
    Banerjee, Moulinath
    Michailidis, George
    [J]. STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 197 - 205
  • [5] Lifshitz tails for spectra of Erdos-Renyi random graphs
    Khorunzhiy, O
    Kirsch, W
    Müller, P
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 295 - 309
  • [6] On large deviation properties of Erdos-Renyi random graphs
    Engel, A
    Monasson, R
    Hartmann, AK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 387 - 426
  • [7] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    [J]. BERNOULLI, 2020, 26 (03) : 2253 - 2274
  • [8] The Large Deviation Principle for Inhomogeneous Erdos-Renyi Random Graphs
    Markering, Maarten
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 711 - 727
  • [9] Majority-vote on directed Erdos-Renyi random graphs
    Lima, F. W. S.
    Sousa, A. O.
    Sumuor, M. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3503 - 3510
  • [10] Eigenvalues Outside the Bulk of Inhomogeneous Erdos-Renyi Random Graphs
    Chakrabarty, Arijit
    Chakraborty, Sukrit
    Hazra, Rajat Subhra
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1746 - 1780