Treewidth of Erdos-Renyi random graphs, random intersection graphs, and scale-free random graphs

被引:20
|
作者
Gao, Yong [1 ]
机构
[1] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, Dept Comp Sci, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Treewidth; Random graphs; Random intersection graphs; Scale-free random graphs; BOUNDED TREEWIDTH; TREE-WIDTH; EXPANSION;
D O I
10.1016/j.dam.2011.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conditions under which the treewidth of three different classes of random graphs is linear in the number of vertices. For the Erdos-Renyi random graph G(n, m), our result improves a previous lower bound obtained by Kloks (1994)[22]. For random intersection graphs, our result strengthens a previous observation on the treewidth by Karonski et al. (1999) [19]. For scale-free random graphs based on the Barabasi-Albert preferential-attachment model, it is shown that if more than 11 vertices are attached to a new vertex, then the treewidth of the obtained network is linear in the size of the network with high probability. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:566 / 578
页数:13
相关论文
共 50 条
  • [1] On Reversible Cascades in Scale-Free and Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Wang, Chao-Hong
    [J]. THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 303 - 318
  • [2] Modularity of Erdos-Renyi random graphs
    McDiarmid, Colin
    Skerman, Fiona
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 211 - 243
  • [3] The Erdos-Renyi theory of random graphs
    Bollobás, B
    [J]. PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [4] Distribution of diameters for Erdos-Renyi random graphs
    Hartmann, A. K.
    Mezard, M.
    [J]. PHYSICAL REVIEW E, 2018, 97 (03)
  • [5] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [6] Changepoint Inference for Erdos-Renyi Random Graphs
    Yudovina, Elena
    Banerjee, Moulinath
    Michailidis, George
    [J]. STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 197 - 205
  • [7] Random sequential renormalization and agglomerative percolation in networks: Application to Erdos-Renyi and scale-free graphs
    Bizhani, Golnoosh
    Grassberger, Peter
    Paczuski, Maya
    [J]. PHYSICAL REVIEW E, 2011, 84 (06)
  • [8] Lifshitz tails for spectra of Erdos-Renyi random graphs
    Khorunzhiy, O
    Kirsch, W
    Müller, P
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 295 - 309
  • [9] On large deviation properties of Erdos-Renyi random graphs
    Engel, A
    Monasson, R
    Hartmann, AK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 387 - 426
  • [10] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    [J]. BERNOULLI, 2020, 26 (03) : 2253 - 2274