Treewidth of Erdos-Renyi random graphs, random intersection graphs, and scale-free random graphs

被引:20
|
作者
Gao, Yong [1 ]
机构
[1] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, Dept Comp Sci, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Treewidth; Random graphs; Random intersection graphs; Scale-free random graphs; BOUNDED TREEWIDTH; TREE-WIDTH; EXPANSION;
D O I
10.1016/j.dam.2011.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conditions under which the treewidth of three different classes of random graphs is linear in the number of vertices. For the Erdos-Renyi random graph G(n, m), our result improves a previous lower bound obtained by Kloks (1994)[22]. For random intersection graphs, our result strengthens a previous observation on the treewidth by Karonski et al. (1999) [19]. For scale-free random graphs based on the Barabasi-Albert preferential-attachment model, it is shown that if more than 11 vertices are attached to a new vertex, then the treewidth of the obtained network is linear in the size of the network with high probability. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:566 / 578
页数:13
相关论文
共 50 条
  • [31] Graph matching beyond perfectly-overlapping Erdos-Renyi random graphs
    Hu, Yaofang
    Wang, Wanjie
    Yu, Yi
    [J]. STATISTICS AND COMPUTING, 2022, 32 (01)
  • [32] Phase Transition in Inhomogenous Erdos-Renyi Random Graphs via Tree Counting
    Ganesan, Ghurumuruhan
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2018, 80 (01): : 1 - 27
  • [33] Intelligibility of Erdos-Renyi Random Graphs and Time Varying Social Network Modeling
    Hamlili, Ali
    [J]. 2017 INTERNATIONAL CONFERENCE ON SMART DIGITAL ENVIRONMENT (ICSDE'17), 2017, : 201 - 206
  • [34] Dynamic Single-Source Shortest Paths in Erdos-Renyi Random Graphs
    Ding, Wei
    Qiu, Ke
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 537 - 550
  • [35] Stable Sets of Threshold-Based Cascades on the Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Lyuu, Yuh-Dauh
    [J]. COMBINATORIAL ALGORITHMS, 2011, 7056 : 96 - +
  • [36] Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdos-Renyi Random Graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2413 - 2441
  • [37] Finite-size corrections to disordered systems on Erdos-Renyi random graphs
    Ferrari, U.
    Lucibello, C.
    Morone, F.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    [J]. PHYSICAL REVIEW B, 2013, 88 (18)
  • [38] Asymptotics for Cliques in Scale-Free Random Graphs
    Alastair Haig
    Fraser Daly
    Seva Shneer
    [J]. Journal of Statistical Physics, 2022, 189
  • [39] Scale-free random graphs and Potts model
    D- S Lee
    K- I Goh
    B Kahng
    D Kim
    [J]. Pramana, 2005, 64 : 1149 - 1159
  • [40] Statistical ensemble of scale-free random graphs
    Burda, Z
    Correia, JD
    Krzywicki, A
    [J]. PHYSICAL REVIEW E, 2001, 64 (04):