Dynamic Single-Source Shortest Paths in Erdos-Renyi Random Graphs

被引:0
|
作者
Ding, Wei [1 ]
Qiu, Ke [2 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Hangzhou 310018, Zhejiang, Peoples R China
[2] Brock Univ, Dept Comp Sci, St Catharines, ON L2S 3A1, Canada
关键词
Dynamic SSSP; Weight increase; Edge deletion; Random graph; FASTER;
D O I
10.1007/978-3-319-26626-8_39
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper studies the dynamic single-source shortest paths (SSSP) in Erdos-Renyi random graphs generated by G(n, p) model. In 2014, Ding and Lin (AAIM 2014, LNCS 8546, 197-207) first considered the dynamic SSSP in general digraphs with arbitrary positive weights, and devised a nontrivial local search algorithm named DSPI which takes at most O(n.max{1, n log n/m}) expected update time to handle a single weight increase, where n is the number of nodes and m is the number of edges in the digraph. DSPI also works on undirected graphs. This paper analyzes the expected update time of DSPI dealing with edge weight increases or edge deletions in Erdos-Renyi (a.k.a., G(n, p)) random graphs. For weighted G(n, p) random graphs with arbitrary positive edge weights, DSPI takes at most O(h(T-s)) expected update time to deal with a single edge weight increase as well as O(pn(2)h(T-s)) total update time, where h(T-s) is the height of input SSSP tree T-s. For G(n, p) random graphs, DSPI takes O(ln n) expected update time to handle a single edge deletion as well as O(pn(2)ln n) total update time when 20 ln n/n <= p < root 2 lnn/n, and O(1) expected update time to handle a single edge deletion as well as O(pn(2)) total update time when p > root 2 lnn/n. Specifically, DSPI takes the least total update time of O(n ln nh(T-s)) for weighted G(n, p) random graphs with p = c ln n/n, c > 1 as well as O(n(3/2) (ln n)(1/2)) for G(n, p) random graphs with p = c root ln n/n, c > root 2.
引用
收藏
页码:537 / 550
页数:14
相关论文
共 50 条
  • [1] Modularity of Erdos-Renyi random graphs
    McDiarmid, Colin
    Skerman, Fiona
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 211 - 243
  • [2] The Erdos-Renyi theory of random graphs
    Bollobás, B
    PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [3] Distribution of diameters for Erdos-Renyi random graphs
    Hartmann, A. K.
    Mezard, M.
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [4] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [5] Changepoint Inference for Erdos-Renyi Random Graphs
    Yudovina, Elena
    Banerjee, Moulinath
    Michailidis, George
    STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 197 - 205
  • [6] Lifshitz tails for spectra of Erdos-Renyi random graphs
    Khorunzhiy, O
    Kirsch, W
    Müller, P
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 295 - 309
  • [7] On large deviation properties of Erdos-Renyi random graphs
    Engel, A
    Monasson, R
    Hartmann, AK
    JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 387 - 426
  • [8] Single-source shortest paths and strong connectivity in dynamic planar graphs
    Charalampopoulos, Panagiotis
    Karczmarz, Adam
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2022, 124 : 97 - 111
  • [9] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    BERNOULLI, 2020, 26 (03) : 2253 - 2274
  • [10] The Large Deviation Principle for Inhomogeneous Erdos-Renyi Random Graphs
    Markering, Maarten
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 711 - 727