Stable Sets of Threshold-Based Cascades on the Erdos-Renyi Random Graphs

被引:0
|
作者
Chang, Ching-Lueh [1 ,2 ]
Lyuu, Yuh-Dauh [3 ,4 ]
机构
[1] Yuan Ze Univ, Dept Comp Sci & Engn, Tao Yuan, Taiwan
[2] Yuan Ze Univ, Dept Comp Sci & Engn, Tao Yuan, Taiwan
[3] Natl Taiwan Unive, Dept Comp Science & Informat, Taipei, Taiwan
[4] Natl Taiwan Univ, Dept Finance, Taipei, Taiwan
来源
COMBINATORIAL ALGORITHMS | 2011年 / 7056卷
关键词
MAJORITY-BASED SYSTEMS; DYNAMIC MONOPOLIES; INFINITE-GRAPHS; 0-1; SEQUENCES; NETWORKS; BEHAVIOR; NUMBER; SIZE; RULE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider the following reversible cascade on the Erdos-Renyi random graph G(n, p). In round zero, a set of vertices, called the seeds, are active. For a given rho is an element of (0, 1], a non-isolated vertex is activated (resp., deactivated) in round t is an element of Z(+) if the fraction f of its neighboring vertices that were active in round t - 1 satisfies f >= rho (resp., f < rho). An irreversible cascade is defined similarly except that active vertices cannot be deactivated. A set of vertices, 5, is said to be stable if no vertex will ever change its state, from active to inactive or vice versa, once the set of active vertices equals S. For both the reversible and the irreversible cascades, we show that for any constant epsilon > 0, all p is an element of [(1 + epsilon) (ln (e/rho))/n, 1] and with probability 1 - n(-ohm(1)), every stable set of G(n, p) has size O(inverted right perpendicular rho ninverted left perpendicular) or n - O(inverted right perpendicular rho ninverted left perpendicular).
引用
收藏
页码:96 / +
页数:4
相关论文
共 50 条
  • [1] Modularity of Erdos-Renyi random graphs
    McDiarmid, Colin
    Skerman, Fiona
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 211 - 243
  • [2] On Reversible Cascades in Scale-Free and Erdos-Renyi Random Graphs
    Chang, Ching-Lueh
    Wang, Chao-Hong
    [J]. THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 303 - 318
  • [3] The Erdos-Renyi theory of random graphs
    Bollobás, B
    [J]. PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [4] Shotgun Threshold for Sparse Erdos-Renyi Graphs
    Ding, Jian
    Jiang, Yiyang
    Ma, Heng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (11) : 7373 - 7391
  • [5] Distribution of diameters for Erdos-Renyi random graphs
    Hartmann, A. K.
    Mezard, M.
    [J]. PHYSICAL REVIEW E, 2018, 97 (03)
  • [6] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [7] Changepoint Inference for Erdos-Renyi Random Graphs
    Yudovina, Elena
    Banerjee, Moulinath
    Michailidis, George
    [J]. STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 197 - 205
  • [8] Lifshitz tails for spectra of Erdos-Renyi random graphs
    Khorunzhiy, O
    Kirsch, W
    Müller, P
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 295 - 309
  • [9] On large deviation properties of Erdos-Renyi random graphs
    Engel, A
    Monasson, R
    Hartmann, AK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 387 - 426
  • [10] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    [J]. BERNOULLI, 2020, 26 (03) : 2253 - 2274