Stable Sets of Threshold-Based Cascades on the Erdos-Renyi Random Graphs

被引:0
|
作者
Chang, Ching-Lueh [1 ,2 ]
Lyuu, Yuh-Dauh [3 ,4 ]
机构
[1] Yuan Ze Univ, Dept Comp Sci & Engn, Tao Yuan, Taiwan
[2] Yuan Ze Univ, Dept Comp Sci & Engn, Tao Yuan, Taiwan
[3] Natl Taiwan Unive, Dept Comp Science & Informat, Taipei, Taiwan
[4] Natl Taiwan Univ, Dept Finance, Taipei, Taiwan
来源
COMBINATORIAL ALGORITHMS | 2011年 / 7056卷
关键词
MAJORITY-BASED SYSTEMS; DYNAMIC MONOPOLIES; INFINITE-GRAPHS; 0-1; SEQUENCES; NETWORKS; BEHAVIOR; NUMBER; SIZE; RULE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider the following reversible cascade on the Erdos-Renyi random graph G(n, p). In round zero, a set of vertices, called the seeds, are active. For a given rho is an element of (0, 1], a non-isolated vertex is activated (resp., deactivated) in round t is an element of Z(+) if the fraction f of its neighboring vertices that were active in round t - 1 satisfies f >= rho (resp., f < rho). An irreversible cascade is defined similarly except that active vertices cannot be deactivated. A set of vertices, 5, is said to be stable if no vertex will ever change its state, from active to inactive or vice versa, once the set of active vertices equals S. For both the reversible and the irreversible cascades, we show that for any constant epsilon > 0, all p is an element of [(1 + epsilon) (ln (e/rho))/n, 1] and with probability 1 - n(-ohm(1)), every stable set of G(n, p) has size O(inverted right perpendicular rho ninverted left perpendicular) or n - O(inverted right perpendicular rho ninverted left perpendicular).
引用
下载
收藏
页码:96 / +
页数:4
相关论文
共 50 条
  • [21] Detection Threshold for Correlated Erdos-Renyi Graphs via Densest Subgraph
    Ding, Jian
    Du, Hang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 5289 - 5298
  • [22] Spectra of adjacency and Laplacian matrices of inhomogeneous Erdos-Renyi random graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [23] On hitting times for a simple random walk on dense Erdos-Renyi random graphs
    Loewe, Matthias
    Torres, Felipe
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 81 - 88
  • [24] Learning Erdos-Renyi Random Graphs via Edge Detecting Queries
    Li, Zihan
    Fresacher, Matthias
    Scarlett, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [25] SCALING LIMIT OF DYNAMICAL PERCOLATION ON CRITICAL ERDOS-RENYI RANDOM GRAPHS
    Rossignol, Raphael
    ANNALS OF PROBABILITY, 2021, 49 (01): : 322 - 399
  • [26] Fluctuations of the Magnetization for Ising Models on Dense Erdos-Renyi Random Graphs
    Kabluchko, Zakhar
    Lowe, Matthias
    Schubert, Kristina
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 78 - 94
  • [27] Fluctuations for the partition function of Ising models on Erdos-Renyi random graphs
    Kabluchko, Zakhar
    Loewe, Matthias
    Schubert, Kristina
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2017 - 2042
  • [28] On exceptional sets in Erdos-Renyi limit theorem
    Li, Jinjun
    Wu, Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 355 - 365
  • [29] Concentration of the Kirchhoff index for Erdos-Renyi graphs
    Boumal, Nicolas
    Cheng, Xiuyuan
    SYSTEMS & CONTROL LETTERS, 2014, 74 : 74 - 80
  • [30] Delocalization Transition for Critical Erdos-Renyi Graphs
    Alt, Johannes
    Ducatez, Raphael
    Knowles, Antti
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 507 - 579