Random walk hitting times and effective resistance in sparsely connected Erdos-Renyi random graphs

被引:3
|
作者
Sylvester, John [1 ,2 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
effective resistance; hitting time; kirchoff index; random graph; random walk; COVER TIME; COMMUTE;
D O I
10.1002/jgt.22551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a bound on the effective resistance R ( x , y ) between two vertices x , y of a connected graph which contains a suitably well-connected subgraph. We apply this bound to the Erdos-Renyi random graph G ( n , p ) with n p = omega ( log n ), proving that R ( x , y ) concentrates around 1 / d ( x ) + 1 / d ( y ), that is, the sum of reciprocal degrees. We also prove expectation and concentration results for the random walk hitting times, Kirchoff index, cover cost, and the random target time (Kemeny's constant) on G ( n , p ) in the sparsely connected regime log n + log log log n <= n p < n 1 / 10.
引用
收藏
页码:44 / 84
页数:41
相关论文
共 50 条