String periods in the order-preserving model

被引:0
|
作者
Gourdel, Garance [1 ]
Kociumaka, Tomasz [2 ,3 ]
Radoszewski, Jakub [3 ]
Rytter, Wojciech [3 ]
Shur, Arseny [4 ]
Walen, Tomasz [3 ]
机构
[1] ENS Paris Saclay, Comp Sci Dept, 9 Rue Blaise Pascal, F-92220 Bagneux, France
[2] Bar Ilan Univ, Dept Comp Sci, IL-5290002 Ramat Gan, Israel
[3] Univ Warsaw, Inst Informat, Banacha 2, PL-02097 Warsaw, Poland
[4] Ural Fed Univ, Dept Algebra & Fundamental Informat, Pr Lenina 51, Ekaterinburg 620000, Russia
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Order-preserving pattern matching; Period; Efficient algorithm; PARTIAL WORDS; ABELIAN PERIODS; EFFICIENT COMPUTATION; WILFS THEOREM; FINE; ALGORITHMS;
D O I
10.1016/j.ic.2019.104463
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the order-preserving model, two strings match if they share the same relative order between the characters at the corresponding positions. This model is quite recent, but it has already attracted significant attention because of its applications in data analysis. We introduce several types of periods in this setting (op-periods). Then we give algorithms to compute these periods in time O(n), O(n loglogn), O(n log(2)logn/logloglogn), O(n logn) depending on the type of periodicity. In the most general variant, the number of different op-periods can be as big as Omega(n(2)), and a compact representation is needed. Our algorithms require novel combinatorial insight into the properties of op-periods. In particular, we characterize the Fine-Wilf property for coprime op-periods. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] String Periods in the Order-Preserving Model
    Gourdel, Garance
    Kociumaka, Tomasz
    Radoszewski, Jakub
    Rytter, Wojciech
    Shur, Arseny
    Walen, Tomasz
    [J]. 35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [2] Dictionary-based order-preserving string compression
    Antoshenkov G.
    [J]. The VLDB Journal, 1997, 6 (1) : 26 - 39
  • [3] Order-Preserving 1-String Representations of Planar Graphs
    Biedl, Therese
    Derka, Martin
    [J]. SOFSEM 2017: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2017, 10139 : 283 - 294
  • [4] Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Kociumaka, Tomasz
    Kubica, Marcin
    Langiu, Alessio
    Pissis, Solon P.
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2013), 2013, 8214 : 84 - 95
  • [5] Order-preserving matching
    Kim, Jinil
    Eades, Peter
    Fleischer, Rudolf
    Hong, Seok-Hee
    Iliopoulos, Costas S.
    Park, Kunsoo
    Puglisi, Simon J.
    Tokuyama, Takeshi
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 525 : 68 - 79
  • [6] ORDER-PRESERVING ASSIGNMENTS
    PADBERG, M
    ALEVRAS, D
    [J]. NAVAL RESEARCH LOGISTICS, 1994, 41 (03) : 395 - 421
  • [7] On order-preserving representations
    Ben Simon, G.
    Burger, M.
    Hartnick, T.
    Iozzi, A.
    Wienhard, A.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 525 - 544
  • [8] Order-preserving indexing
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Kociumaka, Tomasz
    Kubica, Marcin
    Langiu, Alessio
    Pissis, Solon P.
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 638 : 122 - 135
  • [9] RECOGNITION OF ORDER-PRESERVING MAPS
    ENGEL, K
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 2 (01): : 41 - 47
  • [10] Order-preserving reflectors and injectivity
    Carvalho, Margarida
    Sousa, Lurdes
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (17) : 2408 - 2422