Order-preserving matching

被引:55
|
作者
Kim, Jinil [1 ]
Eades, Peter [2 ]
Fleischer, Rudolf [3 ,4 ,5 ]
Hong, Seok-Hee [2 ]
Iliopoulos, Costas S. [6 ,7 ]
Park, Kunsoo [1 ]
Puglisi, Simon J. [8 ]
Tokuyama, Takeshi [9 ]
机构
[1] Seoul Natl Univ, Inst Comp Technol, Dept Comp Sci & Engn, Seoul, South Korea
[2] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
[3] Fudan Univ, SCS, Shanghai 200433, Peoples R China
[4] Fudan Univ, IIPL, Shanghai 200433, Peoples R China
[5] German Univ Technol Oman, Dept Appl Informat Technol, Muscat, Oman
[6] Kings Coll London, Dept Informat, London WC2R 2LS, England
[7] Curtin Univ, Digital Ecosyst & Business Intelligence Inst, Perth, WA, Australia
[8] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
[9] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 980, Japan
基金
澳大利亚研究理事会; 芬兰科学院; 中国国家自然科学基金; 新加坡国家研究基金会;
关键词
String matching; Numeric string; Order relation; Multiple pattern matching; KMP algorithm; Aho-Corasick algorithm; ALGORITHMS; DELTA;
D O I
10.1016/j.tcs.2013.10.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a new string matching problem called order-preserving matching on numeric strings, where a pattern matches a text if the text contains a substring of values whose relative orders coincide with those of the pattern. Order-preserving matching is applicable to many scenarios such as stock price analysis and musical melody matching in which the order relations should be matched instead of the strings themselves. Solving order-preserving matching is closely related to the representation of order relations of a numeric string. We define the prefix representation and the nearest neighbor representation of the pattern, both of which lead to efficient algorithms for order-preserving matching. We present efficient algorithms for single and multiple pattern cases. For the single pattern case, we give an O(n logm) time algorithm and optimize it further to obtain O(n+m logm) time. For the multiple pattern case, we give an O(n logm) time algorithm. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 79
页数:12
相关论文
共 50 条
  • [1] Order-Preserving Matching with Filtration
    Chhabra, Tamanna
    Tarhio, Jorma
    [J]. EXPERIMENTAL ALGORITHMS, SEA 2014, 2014, 8504 : 307 - 314
  • [2] Order-preserving pattern matching with scaling
    Kim, Youngho
    Kang, Munseong
    Na, Joong Chae
    Sim, Jeong Seop
    [J]. INFORMATION PROCESSING LETTERS, 2023, 180
  • [3] Alternative Algorithms for Order-Preserving Matching
    Chhabra, Tamanna
    Kulekci, M. Oguzhan
    Tarhio, Jorma
    [J]. PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2015, 2015, : 36 - 46
  • [4] A Simple Heuristic for Order-Preserving Matching
    Na, Joong Chae
    Lee, Inbok
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (03) : 502 - 504
  • [5] A filtration method for order-preserving matching
    Chhabra, Tamanna
    Tarhio, Jorma
    [J]. INFORMATION PROCESSING LETTERS, 2016, 116 (02) : 71 - 74
  • [6] Order-preserving Wasserstein Distance for Sequence Matching
    Su, Bing
    Hua, Gang
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2906 - 2914
  • [7] A Compact Index for Order-Preserving Pattern Matching
    Decaroli, Gianni
    Gagie, Travis
    Manzini, Giovanni
    [J]. 2017 DATA COMPRESSION CONFERENCE (DCC), 2017, : 72 - 81
  • [8] Order-preserving pattern matching with k mismatches
    Gawrychowski, Pawel
    Uznanski, Przemystaw
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 638 : 136 - 144
  • [9] Order-preserving pattern matching indeterminate strings
    Russo, Luis M. S.
    Costa, Diogo
    Henriques, Rui
    Bannai, Hideo
    Francisco, Alexandre P.
    [J]. INFORMATION AND COMPUTATION, 2022, 289
  • [10] Order-Preserving Pattern Matching with k Mismatches
    Gawrychowski, Pawel
    Uznanski, Przemyslaw
    [J]. COMBINATORIAL PATTERN MATCHING, CPM 2014, 2014, 8486 : 130 - 139