String periods in the order-preserving model

被引:1
|
作者
Gourdel, Garance [1 ]
Kociumaka, Tomasz [2 ,3 ]
Radoszewski, Jakub [3 ]
Rytter, Wojciech [3 ]
Shur, Arseny [4 ]
Walen, Tomasz [3 ]
机构
[1] ENS Paris Saclay, Comp Sci Dept, 9 Rue Blaise Pascal, F-92220 Bagneux, France
[2] Bar Ilan Univ, Dept Comp Sci, IL-5290002 Ramat Gan, Israel
[3] Univ Warsaw, Inst Informat, Banacha 2, PL-02097 Warsaw, Poland
[4] Ural Fed Univ, Dept Algebra & Fundamental Informat, Pr Lenina 51, Ekaterinburg 620000, Russia
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Order-preserving pattern matching; Period; Efficient algorithm; PARTIAL WORDS; ABELIAN PERIODS; EFFICIENT COMPUTATION; WILFS THEOREM; FINE; ALGORITHMS;
D O I
10.1016/j.ic.2019.104463
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the order-preserving model, two strings match if they share the same relative order between the characters at the corresponding positions. This model is quite recent, but it has already attracted significant attention because of its applications in data analysis. We introduce several types of periods in this setting (op-periods). Then we give algorithms to compute these periods in time O(n), O(n loglogn), O(n log(2)logn/logloglogn), O(n logn) depending on the type of periodicity. In the most general variant, the number of different op-periods can be as big as Omega(n(2)), and a compact representation is needed. Our algorithms require novel combinatorial insight into the properties of op-periods. In particular, we characterize the Fine-Wilf property for coprime op-periods. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Order-Preserving Wasserstein Discriminant Analysis
    Su, Bing
    Zhou, Jiahuan
    Wu, Ying
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9884 - 9893
  • [22] ORDER-PRESERVING EXTENSIONS OF LIPSCHITZ MAPS
    Ok, Efe a.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025, 118 (01) : 91 - 107
  • [23] Alternative Algorithms for Order-Preserving Matching
    Chhabra, Tamanna
    Kulekci, M. Oguzhan
    Tarhio, Jorma
    PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2015, 2015, : 36 - 46
  • [24] Endomorphisms of the semigroup of order-preserving mappings
    Fernandes, V. H.
    Jesus, M. M.
    Maltcev, V.
    Mitchell, J. D.
    SEMIGROUP FORUM, 2010, 81 (02) : 277 - 285
  • [25] Order-preserving pattern matching with scaling
    Kim, Youngho
    Kang, Munseong
    Na, Joong Chae
    Sim, Jeong Seop
    INFORMATION PROCESSING LETTERS, 2023, 180
  • [26] On certain order-preserving transformation semigroups
    Zhang, Jia
    Luo, Yanfeng
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2980 - 2995
  • [27] Order-Preserving Pattern Matching with Partition
    Na, Joong Chae
    Kim, Youngjoon
    Kang, Seokchul
    Sim, Jeong Seop
    MATHEMATICS, 2024, 12 (21)
  • [28] POSITIVE EIGENVECTORS OF ORDER-PRESERVING MAPS
    SCHNEIDE.H
    TURNER, REL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 37 (02) : 506 - &
  • [29] ON ORDER-PRESERVING EXTENSIONS TO REGRESSIVE ISOLS
    SANSONE, FJ
    MICHIGAN MATHEMATICAL JOURNAL, 1966, 13 (03) : 353 - &
  • [30] ORDER-PRESERVING MAPS AND INTEGRATION PROCESSES
    MCSHANE, EJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (05) : 371 - 371