String periods in the order-preserving model

被引:1
|
作者
Gourdel, Garance [1 ]
Kociumaka, Tomasz [2 ,3 ]
Radoszewski, Jakub [3 ]
Rytter, Wojciech [3 ]
Shur, Arseny [4 ]
Walen, Tomasz [3 ]
机构
[1] ENS Paris Saclay, Comp Sci Dept, 9 Rue Blaise Pascal, F-92220 Bagneux, France
[2] Bar Ilan Univ, Dept Comp Sci, IL-5290002 Ramat Gan, Israel
[3] Univ Warsaw, Inst Informat, Banacha 2, PL-02097 Warsaw, Poland
[4] Ural Fed Univ, Dept Algebra & Fundamental Informat, Pr Lenina 51, Ekaterinburg 620000, Russia
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Order-preserving pattern matching; Period; Efficient algorithm; PARTIAL WORDS; ABELIAN PERIODS; EFFICIENT COMPUTATION; WILFS THEOREM; FINE; ALGORITHMS;
D O I
10.1016/j.ic.2019.104463
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the order-preserving model, two strings match if they share the same relative order between the characters at the corresponding positions. This model is quite recent, but it has already attracted significant attention because of its applications in data analysis. We introduce several types of periods in this setting (op-periods). Then we give algorithms to compute these periods in time O(n), O(n loglogn), O(n log(2)logn/logloglogn), O(n logn) depending on the type of periodicity. In the most general variant, the number of different op-periods can be as big as Omega(n(2)), and a compact representation is needed. Our algorithms require novel combinatorial insight into the properties of op-periods. In particular, we characterize the Fine-Wilf property for coprime op-periods. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Modular Order-Preserving Encryption, Revisited
    Mavroforakis, Charalampos
    Chenette, Nathan
    O'Neill, Adam
    Kollios, George
    Canetti, Ran
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 763 - 777
  • [32] CONVERGENCE FOR STRONGLY ORDER-PRESERVING SEMIFLOWS
    SMITH, HL
    THIEME, HR
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) : 1081 - 1101
  • [33] Fixed points of order-preserving transformations
    Laradji, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (04)
  • [34] SYMBOLIC DYNAMICS OF ORDER-PRESERVING ORBITS
    VEERMAN, JJP
    PHYSICA D-NONLINEAR PHENOMENA, 1987, 29 (1-2) : 191 - 201
  • [35] Regular order-preserving transformation semigroups
    Kemprasit, Y
    Changphas, T
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (03) : 511 - 524
  • [36] Extension of order-preserving maps on a cone
    Burbanks, AD
    Nussbaum, RD
    Sparrow, CT
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 35 - 59
  • [37] Probability-based order-preserving string compression in column-oriented data warehouse
    Xia, Xiaoling
    Li, Haiyan
    Wang, Mei
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2013, 50 (08): : 1674 - 1682
  • [38] Continued fractions and order-preserving homeomorphism
    Lupiañez, FG
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) : 255 - 258
  • [39] A maximum principle for order-preserving mappings
    Chambolle, A
    Lucier, BJ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07): : 823 - 827
  • [40] Order-preserving random dynamical systems
    不详
    MONOTONE RANDOM SYSTEMS - THEORY AND APPLICATIONS, 2002, 1779 : 83 - 111