String periods in the order-preserving model

被引:0
|
作者
Gourdel, Garance [1 ]
Kociumaka, Tomasz [2 ,3 ]
Radoszewski, Jakub [3 ]
Rytter, Wojciech [3 ]
Shur, Arseny [4 ]
Walen, Tomasz [3 ]
机构
[1] ENS Paris Saclay, Comp Sci Dept, 9 Rue Blaise Pascal, F-92220 Bagneux, France
[2] Bar Ilan Univ, Dept Comp Sci, IL-5290002 Ramat Gan, Israel
[3] Univ Warsaw, Inst Informat, Banacha 2, PL-02097 Warsaw, Poland
[4] Ural Fed Univ, Dept Algebra & Fundamental Informat, Pr Lenina 51, Ekaterinburg 620000, Russia
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Order-preserving pattern matching; Period; Efficient algorithm; PARTIAL WORDS; ABELIAN PERIODS; EFFICIENT COMPUTATION; WILFS THEOREM; FINE; ALGORITHMS;
D O I
10.1016/j.ic.2019.104463
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the order-preserving model, two strings match if they share the same relative order between the characters at the corresponding positions. This model is quite recent, but it has already attracted significant attention because of its applications in data analysis. We introduce several types of periods in this setting (op-periods). Then we give algorithms to compute these periods in time O(n), O(n loglogn), O(n log(2)logn/logloglogn), O(n logn) depending on the type of periodicity. In the most general variant, the number of different op-periods can be as big as Omega(n(2)), and a compact representation is needed. Our algorithms require novel combinatorial insight into the properties of op-periods. In particular, we characterize the Fine-Wilf property for coprime op-periods. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Order-Preserving Transformations and Applications
    A. Cambini
    D.T. Luc
    L. Martein
    [J]. Journal of Optimization Theory and Applications, 2003, 118 : 275 - 293
  • [12] Order-preserving transformations and applications
    Cambini, A
    Luc, DT
    Martein, L
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (02) : 275 - 293
  • [13] ORDER-PRESERVING KEY TRANSFORMATIONS
    GARG, AK
    GOTLIEB, CC
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 1986, 11 (02): : 213 - 234
  • [14] Order-Preserving Symmetric Encryption
    Boldyreva, Alexandra
    Chenette, Nathan
    Lee, Younho
    O'Neill, Adam
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009, 2009, 5479 : 224 - 241
  • [15] ORDER-PRESERVING AUTOMORPHISMS IN A FIELD
    BLOOM, DM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (02): : 185 - 185
  • [16] Semigroups of order-preserving mappings
    Repnitskii, VB
    Vernitskii, AS
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) : 3635 - 3641
  • [17] Order-Preserving Matching with Filtration
    Chhabra, Tamanna
    Tarhio, Jorma
    [J]. EXPERIMENTAL ALGORITHMS, SEA 2014, 2014, 8504 : 307 - 314
  • [18] Dictionary-based Order-preserving String Compression for Main Memory Column Stores
    Binnig, Carsten
    Hildenbrand, Stefan
    Faerber, Franz
    [J]. ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 283 - 295
  • [19] Strong order-preserving renaming in the synchronous message passing model
    Okun, Michael
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (40-42) : 3787 - 3794
  • [20] An order-preserving property of the maximum likelihood estimates for the Rasch model
    Bertoli-Barsotti, L
    [J]. STATISTICS & PROBABILITY LETTERS, 2003, 61 (01) : 91 - 96