Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes

被引:0
|
作者
Crochemore, Maxime [1 ,6 ]
Iliopoulos, Costas S. [1 ,5 ]
Kociumaka, Tomasz [2 ]
Kubica, Marcin [2 ]
Langiu, Alessio [1 ]
Pissis, Solon P. [7 ,8 ]
Radoszewski, Jakub [2 ]
Rytter, Wojciech [2 ,4 ]
Walen, Tomasz [2 ,3 ]
机构
[1] Kings Coll London, Dept Informat, London WC2R 2LS, England
[2] Warsaw Univ, Fac Math Informat & Mech, Warsaw, Poland
[3] Int Inst Mol & Cell Biol Warsaw, Lab Bioinformat & Protein Engn, Warsaw, Poland
[4] Copernicus Univ, Fac Math & Comp Sci, Torun, Poland
[5] Univ Western Australia, Fac Engn Comp & Math, Perth, WA, Australia
[6] Univ Paris Est, Champs Sur Marne, France
[7] Univ Florida, Florida Museum Nat Hist, Lab Mol Systemat & Evolutionary Genet, Gainesville, FL 32611 USA
[8] HITS GmbH, Sci Comp Grp, Exelixis Lab & HPC Infrastruct, Heidelberg, Germany
关键词
ONLINE CONSTRUCTION; PERMUTATIONS; ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently Kubica et al. (Inf. Process. Let., 2013) and Kim et al. (submitted to Theor. Comp. Sci.) introduced order-preserving pattern matching: for a given text the goal is to find its factors having the same 'shape' as a given pattern. Known results include a linear-time algorithm for this problem (in case of polynomially-bounded alphabet) and a generalization to multiple patterns. We give an O(n log log n) time construction of an index that enables order-preserving pattern matching queries in time proportional to pattern length. The main component is a data structure being an incomplete suffix tree in the order-preserving setting. The tree can miss single letters related to branching at internal nodes. Such incompleteness results from the weakness of our so called weak character oracle. However, due to its weakness, such oracle can answer queries on-line in O(log log n) time using a sliding-window approach. For most of the applications such incomplete suffix-trees provide the same functional power as the complete ones. We also give an O(n log n/log log n) time algorithm constructing complete order-preserving suffix trees.
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [1] Order-preserving matching
    Kim, Jinil
    Eades, Peter
    Fleischer, Rudolf
    Hong, Seok-Hee
    Iliopoulos, Costas S.
    Park, Kunsoo
    Puglisi, Simon J.
    Tokuyama, Takeshi
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 525 : 68 - 79
  • [2] ORDER-PRESERVING ASSIGNMENTS
    PADBERG, M
    ALEVRAS, D
    [J]. NAVAL RESEARCH LOGISTICS, 1994, 41 (03) : 395 - 421
  • [3] On order-preserving representations
    Ben Simon, G.
    Burger, M.
    Hartnick, T.
    Iozzi, A.
    Wienhard, A.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 525 - 544
  • [4] Order-preserving indexing
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Kociumaka, Tomasz
    Kubica, Marcin
    Langiu, Alessio
    Pissis, Solon P.
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 638 : 122 - 135
  • [5] RECOGNITION OF ORDER-PRESERVING MAPS
    ENGEL, K
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 2 (01): : 41 - 47
  • [6] Order-preserving reflectors and injectivity
    Carvalho, Margarida
    Sousa, Lurdes
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (17) : 2408 - 2422
  • [7] Order-Preserving Transformations and Applications
    A. Cambini
    D.T. Luc
    L. Martein
    [J]. Journal of Optimization Theory and Applications, 2003, 118 : 275 - 293
  • [8] Order-preserving transformations and applications
    Cambini, A
    Luc, DT
    Martein, L
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (02) : 275 - 293
  • [9] ORDER-PRESERVING KEY TRANSFORMATIONS
    GARG, AK
    GOTLIEB, CC
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 1986, 11 (02): : 213 - 234
  • [10] Order-Preserving Symmetric Encryption
    Boldyreva, Alexandra
    Chenette, Nathan
    Lee, Younho
    O'Neill, Adam
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009, 2009, 5479 : 224 - 241