Bifurcations and random matrix theory

被引:0
|
作者
Pollner, P
Eckhardt, B
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Eotvos Lorand Univ, Komplex Rendszerek Fiz Tanszek, H-1518 Budapest, Hungary
来源
EUROPHYSICS LETTERS | 2001年 / 53卷 / 06期
关键词
D O I
10.1209/epl/i2001-00207-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The divergence of semiclassical amplitudes at periodic orbit bifurcations has strong effects on long-range spectral statistics. We discuss the statistical weight of such effects in parameter pace, using as an example the quantised standard map a a function of the kicking strength. The parameter interval affected by saddle-node bifurcations is independent of (h) over bar and determined by classical dynamics. In the distribution P(t) of the traces of the evolution operator the bifurcations contribute an algebraically decaying part that exceeds the exponentially decaying RMT part for large traces. Specifically, for saddle-node bifurcations P(t) similar to t(-3) up to t similar to (h) over bar (-1/6).
引用
收藏
页码:703 / 708
页数:6
相关论文
共 50 条
  • [1] Random matrix theory and random uncertainties modeling
    Soize, C.
    COMPUTATIONAL STOCHASTIC MECHANICS, 2003, : 575 - 581
  • [2] Combinatorics and random matrix theory
    Tao, Terence
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 161 - 169
  • [3] Quasiclassical random matrix theory
    Prange, RE
    PHYSICAL REVIEW LETTERS, 1996, 77 (12) : 2447 - 2450
  • [4] Superstatistics in random matrix theory
    Abul-Magd, AY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 361 (01) : 41 - 54
  • [5] A random matrix theory of decoherence
    Gorin, T.
    Pineda, C.
    Kohler, H.
    Seligman, T. H.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [6] Octonions in random matrix theory
    Forrester, Peter J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2200):
  • [7] QCD and random matrix theory
    Jackson, AD
    NUCLEAR PHYSICS A, 1998, 638 (1-2) : 329C - 338C
  • [8] Developments in random matrix theory
    Forrester, PJ
    Snaith, NC
    Verbaarschot, JJM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : R1 - R10
  • [9] Dualities in random matrix theory
    Forrester, Peter J.
    arXiv,
  • [10] Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States
    Ambainis, Andris
    Harrow, Aram W.
    Hastings, Matthew B.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 310 (01) : 25 - 74