Bifurcations and random matrix theory

被引:0
|
作者
Pollner, P
Eckhardt, B
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Eotvos Lorand Univ, Komplex Rendszerek Fiz Tanszek, H-1518 Budapest, Hungary
来源
EUROPHYSICS LETTERS | 2001年 / 53卷 / 06期
关键词
D O I
10.1209/epl/i2001-00207-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The divergence of semiclassical amplitudes at periodic orbit bifurcations has strong effects on long-range spectral statistics. We discuss the statistical weight of such effects in parameter pace, using as an example the quantised standard map a a function of the kicking strength. The parameter interval affected by saddle-node bifurcations is independent of (h) over bar and determined by classical dynamics. In the distribution P(t) of the traces of the evolution operator the bifurcations contribute an algebraically decaying part that exceeds the exponentially decaying RMT part for large traces. Specifically, for saddle-node bifurcations P(t) similar to t(-3) up to t similar to (h) over bar (-1/6).
引用
收藏
页码:703 / 708
页数:6
相关论文
共 50 条
  • [21] Raney Distributions and Random Matrix Theory
    Peter J. Forrester
    Dang-Zheng Liu
    Journal of Statistical Physics, 2015, 158 : 1051 - 1082
  • [22] Dynamical approach to random matrix theory
    Tao, Terence
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 161 - 169
  • [23] Tensor product random matrix theory
    Altland, Alexander
    de Miranda, Joaquim Telles
    Micklitz, Tobias
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [24] Random matrix theory and the Anderson model
    Bellissard, J
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 739 - 754
  • [25] Random Matrix Theory in Cd isotopes
    Majarshin, A. J.
    Luo, Yan-An
    Pan, Feng
    Draayer, Jerry P.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (10)
  • [26] Random matrix theory and mesoscopic fluctuations
    Seba, P
    PHYSICAL REVIEW B, 1996, 53 (19): : 13024 - 13028
  • [27] Law of addition in random matrix theory
    Zee, A
    NUCLEAR PHYSICS B, 1996, 474 (03) : 726 - 744
  • [28] Riemann Zeros and Random Matrix Theory
    N. C. Snaith
    Milan Journal of Mathematics, 2010, 78 : 135 - 152
  • [29] Extremal correlators and random matrix theory
    Grassi, Alba
    Komargodski, Zohar
    Tizzano, Luigi
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [30] Random Matrix Theory and the Anderson Model
    Jean Bellissard
    Journal of Statistical Physics, 2004, 116 : 739 - 754