Bifurcations and random matrix theory

被引:0
|
作者
Pollner, P
Eckhardt, B
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Eotvos Lorand Univ, Komplex Rendszerek Fiz Tanszek, H-1518 Budapest, Hungary
来源
EUROPHYSICS LETTERS | 2001年 / 53卷 / 06期
关键词
D O I
10.1209/epl/i2001-00207-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The divergence of semiclassical amplitudes at periodic orbit bifurcations has strong effects on long-range spectral statistics. We discuss the statistical weight of such effects in parameter pace, using as an example the quantised standard map a a function of the kicking strength. The parameter interval affected by saddle-node bifurcations is independent of (h) over bar and determined by classical dynamics. In the distribution P(t) of the traces of the evolution operator the bifurcations contribute an algebraically decaying part that exceeds the exponentially decaying RMT part for large traces. Specifically, for saddle-node bifurcations P(t) similar to t(-3) up to t similar to (h) over bar (-1/6).
引用
收藏
页码:703 / 708
页数:6
相关论文
共 50 条
  • [41] Extremal correlators and random matrix theory
    Alba Grassi
    Zohar Komargodski
    Luigi Tizzano
    Journal of High Energy Physics, 2021
  • [42] Riemann Zeros and Random Matrix Theory
    Snaith, N. C.
    MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 135 - 152
  • [43] Proof methods in random matrix theory
    Fleermann, Michael
    Kirsch, Werner
    PROBABILITY SURVEYS, 2023, 20 : 291 - 381
  • [44] Random matrix theory in statistics: A review
    Paul, Debashis
    Aue, Alexander
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 150 : 1 - 29
  • [45] Universal shocks in random matrix theory
    Blaizot, Jean-Paul
    Nowak, Maciej A.
    PHYSICAL REVIEW E, 2010, 82 (05)
  • [46] Introduction to a large random matrix theory
    Najim, Jamal
    TRAITEMENT DU SIGNAL, 2016, 33 (2-3) : 161 - 222
  • [47] The Distributions of Random Matrix Theory and their Applications
    Tracy, Craig A.
    Widom, Harold
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 753 - +
  • [48] The Oxford handbook of random matrix theory
    Schilling, Rene L.
    MATHEMATICAL GAZETTE, 2013, 97 (539): : 375 - 376
  • [49] Random matrix theory at nonzero μ and T
    Splittorff, Kim
    Verbaarscht, Jacobus Johannes Maria
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2007, (168): : 265 - 275
  • [50] Random matrix theory of the isospectral twirling
    Oliviero, Salvatore F. E.
    Leone, Lorenzo
    Caravelli, Francesco
    Hamma, Alioscia
    SCIPOST PHYSICS, 2021, 10 (03):