The divergence of semiclassical amplitudes at periodic orbit bifurcations has strong effects on long-range spectral statistics. We discuss the statistical weight of such effects in parameter pace, using as an example the quantised standard map a a function of the kicking strength. The parameter interval affected by saddle-node bifurcations is independent of (h) over bar and determined by classical dynamics. In the distribution P(t) of the traces of the evolution operator the bifurcations contribute an algebraically decaying part that exceeds the exponentially decaying RMT part for large traces. Specifically, for saddle-node bifurcations P(t) similar to t(-3) up to t similar to (h) over bar (-1/6).