Bifurcations and random matrix theory

被引:0
|
作者
Pollner, P
Eckhardt, B
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Eotvos Lorand Univ, Komplex Rendszerek Fiz Tanszek, H-1518 Budapest, Hungary
来源
EUROPHYSICS LETTERS | 2001年 / 53卷 / 06期
关键词
D O I
10.1209/epl/i2001-00207-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The divergence of semiclassical amplitudes at periodic orbit bifurcations has strong effects on long-range spectral statistics. We discuss the statistical weight of such effects in parameter pace, using as an example the quantised standard map a a function of the kicking strength. The parameter interval affected by saddle-node bifurcations is independent of (h) over bar and determined by classical dynamics. In the distribution P(t) of the traces of the evolution operator the bifurcations contribute an algebraically decaying part that exceeds the exponentially decaying RMT part for large traces. Specifically, for saddle-node bifurcations P(t) similar to t(-3) up to t similar to (h) over bar (-1/6).
引用
收藏
页码:703 / 708
页数:6
相关论文
共 50 条
  • [31] Nonlinear Perturbation of Random Matrix Theory
    Frahm, Klaus M.
    Shepelyansky, Dima L.
    PHYSICAL REVIEW LETTERS, 2023, 131 (07)
  • [32] Quantum dynamics and random matrix theory
    Kunz, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (14-15): : 2003 - 2008
  • [33] Tests of random matrix theory in nuclei
    Mitchell, GE
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03): : 424 - 428
  • [34] Diffusion method in random matrix theory
    Grela, Jacek
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (01)
  • [35] FOUNDATIONS OF RANDOM MATRIX-THEORY
    GIRKO, VL
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (03): : 645 - 649
  • [36] On Random Matrix Theory and Autoregressive Modeling
    Solo, Victor
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 4527 - 4532
  • [37] Path counting and random matrix theory
    Dumitriu, I
    Rassart, E
    ELECTRONIC JOURNAL OF COMBINATORICS, 2003, 10 (01):
  • [38] Random matrix theory and symmetric spaces
    Caselle, M
    Magnea, U
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 394 (2-3): : 41 - 156
  • [39] Centrality of the collision and random matrix theory
    Wazir, Z.
    CHINESE PHYSICS C, 2010, 34 (10) : 1593 - 1597
  • [40] Random Matrix Theory of Resonances: an Overview
    Fyodorov, Yan V.
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 666 - 669