Bifurcations and random matrix theory

被引:0
|
作者
Pollner, P
Eckhardt, B
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Eotvos Lorand Univ, Komplex Rendszerek Fiz Tanszek, H-1518 Budapest, Hungary
来源
EUROPHYSICS LETTERS | 2001年 / 53卷 / 06期
关键词
D O I
10.1209/epl/i2001-00207-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The divergence of semiclassical amplitudes at periodic orbit bifurcations has strong effects on long-range spectral statistics. We discuss the statistical weight of such effects in parameter pace, using as an example the quantised standard map a a function of the kicking strength. The parameter interval affected by saddle-node bifurcations is independent of (h) over bar and determined by classical dynamics. In the distribution P(t) of the traces of the evolution operator the bifurcations contribute an algebraically decaying part that exceeds the exponentially decaying RMT part for large traces. Specifically, for saddle-node bifurcations P(t) similar to t(-3) up to t similar to (h) over bar (-1/6).
引用
收藏
页码:703 / 708
页数:6
相关论文
共 50 条
  • [11] Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States
    Andris Ambainis
    Aram W. Harrow
    Matthew B. Hastings
    Communications in Mathematical Physics, 2012, 310 : 25 - 74
  • [12] BEYOND UNIVERSALITY IN RANDOM MATRIX THEORY
    Edelman, Alan
    Guionnet, A.
    Peche, S.
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (03): : 1659 - 1697
  • [13] Law of addition in random matrix theory
    Zee, A.
    Nuclear Physics, Section B, 474 (03):
  • [14] Action correlations and random matrix theory
    Smilansky, U
    Verdene, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3525 - 3549
  • [15] Random matrix theory and the zeros of ζ′(s)
    Mezzadri, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 2945 - 2962
  • [16] Raney Distributions and Random Matrix Theory
    Forrester, Peter J.
    Liu, Dang-Zheng
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) : 1051 - 1082
  • [17] Logarithmic universality in random matrix theory
    Splittorff, K
    NUCLEAR PHYSICS B, 1999, 548 (1-3) : 613 - 625
  • [18] Staggered chiral random matrix theory
    Osborn, James C.
    PHYSICAL REVIEW D, 2011, 83 (03):
  • [19] Quantum fluctuations and random matrix theory
    Duras, MM
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 456 - 459
  • [20] Centrality of the collision and random matrix theory
    Z.Wazir
    中国物理C, 2010, (10) : 1593 - 1597