Approximation of quantum tori by finite quantum tori for the quantum Gromov-Hausdorff distance

被引:37
|
作者
Latrémoliére, F [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
基金
美国国家科学基金会;
关键词
quantum Gromov-Hausdorff distance; quantum tous; noncommutative metric geometry;
D O I
10.1016/j.jfa.2005.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish that, given a compact Abelian group G endowed with a continuous length function l and a sequence (H-n)(n is an element of N) of closed subgroups of G converging to G for the Hausdorff distance induced by 1, then C* ((G) over cap, a) is the quantum Gromov-Hausdorff limit of any sequence C*((H) over cap (n), sigma(n))(n is an element of N) for the natural quantum metric structures and when the lifts of sigma(n) to (G) over cap converge pointwise to sigma. This allows us in particular to approximate the quantum tori by finite-dimensional C*-algebras for the quantum Gromov-Hausdorff distance. Moreover, we also establish that if the length function l is allowed to vary, we can collapse quantum metric spaces to various quotient quantum metric spaces. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:365 / 395
页数:31
相关论文
共 50 条
  • [41] Vector Bundles and Gromov-Hausdorff Distance
    Rieffel, Marc A.
    JOURNAL OF K-THEORY, 2010, 5 (01) : 39 - 103
  • [42] Binomial ideals in quantum tori and quantum affine spaces
    Goodearl, K. R.
    JOURNAL OF ALGEBRA, 2024, 657 : 638 - 674
  • [43] Approximating Gromov-Hausdorff distance in Euclidean space
    Majhi, Sushovan
    Vitter, Jeffrey
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 116
  • [44] Quantum traces and embeddings of stated skein algebras into quantum tori
    Le, Thang T. Q.
    Yu, Tao
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [45] The quantum Loschmidt echo on flat tori
    Riviere, Gabriel
    Ueberschar, Henrik
    NONLINEARITY, 2019, 32 (06) : 2094 - 2127
  • [46] Liouville quantum gravity on complex tori
    David, Francois
    Rhodes, Remi
    Vargas, Vincent
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [47] Quantum groups, quantum tori, and the Grothendieck-Springer resolution
    Schrader, Gus
    Shapiro, Alexander
    ADVANCES IN MATHEMATICS, 2017, 321 : 431 - 474
  • [48] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 529 - 540
  • [49] Estimates for Modified (Euclidean) Gromov-Hausdorff Distance
    Malysheva, O. S.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2024, 79 (04) : 201 - 205
  • [50] Quantum traces and embeddings of stated skein algebras into quantum tori
    Thang T. Q. Lê
    Tao Yu
    Selecta Mathematica, 2022, 28