Computing the Gromov-Hausdorff Distance for Metric Trees

被引:8
|
作者
Agarwal, Pankaj K. [1 ]
Fox, Kyle [1 ]
Nath, Abhinandan [1 ]
Sidiropoulos, Anastasios [2 ]
Wang, Yusu [2 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
[2] Ohio State Univ, Columbus, OH 43210 USA
来源
基金
美国国家科学基金会;
关键词
STABILITY;
D O I
10.1007/978-3-662-48971-0_45
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Hausdorff distance is a natural way to measure distance between two metric spaces. We give the first proof of hardness and first non-trivial approximation algorithm for computing the GromovHausdorff distance for geodesic metrics in trees. Specifically, we prove it is NP-hard to approximate the Gromov-Hausdorff distance better than a factor of 3. We complement this result by providing a polynomial time O(min{n, root rn)-approximation algorithm where r is the ratio of the longest edge length in both trees to the shortest edge length. For metric trees with unit length edges, this yields an 0(root rn,)-approximation algorithm.
引用
收藏
页码:529 / 540
页数:12
相关论文
共 50 条
  • [1] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (02)
  • [2] Metric trees in the Gromov-Hausdorff space
    Ishiki, Yoshito
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (01): : 73 - 82
  • [4] Hausdorff and Gromov-Hausdorff distance
    PROBILITY AND REAL TREES, 2008, 1920 : 45 - 68
  • [5] Quantized Gromov-Hausdorff distance
    Wu, Wei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) : 58 - 98
  • [6] Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
    Borzov, Stanislav I.
    Ivanov, Alexandr O.
    Tuzhilin, Alexey A.
    SBORNIK MATHEMATICS, 2022, 213 (05) : 641 - 658
  • [7] Gromov-Hausdorff convergence of metric spaces
    Peter, Petersen V
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (01):
  • [8] Gromov-hausdorff convergence of metric spaces
    Petersen, Peter
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [9] ON THE GROMOV-HAUSDORFF LIMIT OF METRIC SPACES
    Wu, Zhijuan
    Xiao, Yingqing
    MATHEMATICA SLOVACA, 2019, 69 (04) : 931 - 938
  • [10] Gromov-Hausdorff convergence of metric pairs and metric tuples
    Ahumada Gomez, Andres
    Che, Mauricio
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 94