Gromov-Hausdorff distance for quantum metric spaces

被引:0
|
作者
不详
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a quantum metric space we mean a C*-algebra (or more generally an order-unit space) equipped with a generalization of the usual Lipschitz seminorm on functions which one associates to an ordinary metric. We develop for compact quantum metric spaces a version of Gromov-Hausdorff distance. We show that the basic theorems of the classical theory have natural quantum analogues. Our main example involves the quantum tori, A(theta). We show, for consistently defined "metrics", that if a sequence {theta(n)} of parameters converges to a parameter theta, then the sequence {A(thetan)} of quantum tori converges in quantum Gromov-Hausdorff distance to A(theta).
引用
收藏
页码:1 / 65
页数:65
相关论文
共 50 条
  • [1] Quantum Metric Spaces and the Gromov-Hausdorff Propinquity
    Latremoliere, Frederic
    [J]. NONCOMMUTATIVE GEOMETRY AND OPTIMAL TRANSPORT, 2016, 676 : 47 - +
  • [2] Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
    Borzov, Stanislav I.
    Ivanov, Alexandr O.
    Tuzhilin, Alexey A.
    [J]. SBORNIK MATHEMATICS, 2022, 213 (05) : 641 - 658
  • [3] ON THE GROMOV-HAUSDORFF LIMIT OF METRIC SPACES
    Wu, Zhijuan
    Xiao, Yingqing
    [J]. MATHEMATICA SLOVACA, 2019, 69 (04) : 931 - 938
  • [4] ON GROMOV-HAUSDORFF CONVERGENCE FOR OPERATOR METRIC SPACES
    Kerr, David
    Li, Hanfeng
    [J]. JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 83 - 109
  • [5] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 529 - 540
  • [6] Matricial quantum Gromov-Hausdorff distance
    Kerr, D
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) : 132 - 167
  • [7] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (02)
  • [8] Lorentzian metric spaces and their Gromov-Hausdorff convergence
    Minguzzi, E.
    Suhr, S.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [9] Hausdorff and Gromov-Hausdorff distance
    [J]. PROBILITY AND REAL TREES, 2008, 1920 : 45 - 68
  • [10] Quantized Gromov-Hausdorff distance
    Wu, Wei
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) : 58 - 98