Computing the Gromov-Hausdorff Distance for Metric Trees

被引:7
|
作者
Agarwal, Pankaj K. [1 ]
Fox, Kyle [2 ]
Nath, Abhinandan [1 ]
Sidiropoulos, Anastasios [3 ]
Wang, Yusu [4 ]
机构
[1] Duke Univ, Levine Sci Res Ctr, Dept Comp Sci, Box 90129, Durham, NC 27708 USA
[2] Univ Texas Dallas, Dept Comp Sci, 800 W Campbell Rd,MS EC-31, Richardson, TX 75080 USA
[3] Univ Illinois, 851 S Morgan St,Room 1240 SEO, Chicago, IL 60607 USA
[4] Ohio State Univ, Comp Sci & Engn Dept, Dreese Lab 487, 2015 Neil Ave, Columbus, OH 43210 USA
关键词
Metric spaces; embeddings;
D O I
10.1145/3185466
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Hausdorff (GH) distance is a natural way to measure distance between two metric spaces. We prove that it is NP-hard to approximate the GH distance better than a factor of 3 for geodesic metrics on a pair of trees. We complement this result by providing a polynomial time O(min{n, root rn})-approximation algorithm for computing the GH distance between a pair of metric trees, where r is the ratio of the longest edge length in both trees to the shortest edge length. For metric trees with unit length edges, this yields an O(root n)-approximation algorithm.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 529 - 540
  • [2] Metric trees in the Gromov-Hausdorff space
    Ishiki, Yoshito
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (01): : 73 - 82
  • [4] Hausdorff and Gromov-Hausdorff distance
    [J]. PROBILITY AND REAL TREES, 2008, 1920 : 45 - 68
  • [5] Quantized Gromov-Hausdorff distance
    Wu, Wei
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) : 58 - 98
  • [6] Geometry of the Gromov-Hausdorff distance on the class of all metric spaces
    Borzov, Stanislav I.
    Ivanov, Alexandr O.
    Tuzhilin, Alexey A.
    [J]. SBORNIK MATHEMATICS, 2022, 213 (05) : 641 - 658
  • [7] ON THE GROMOV-HAUSDORFF LIMIT OF METRIC SPACES
    Wu, Zhijuan
    Xiao, Yingqing
    [J]. MATHEMATICA SLOVACA, 2019, 69 (04) : 931 - 938
  • [8] Gromov-Hausdorff convergence of metric pairs and metric tuples
    Ahumada Gomez, Andres
    Che, Mauricio
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 94
  • [9] The Gromov-Hausdorff distance between spheres
    Lim, Sunhyuk
    Memoli, Facundo
    Smith, Zane
    [J]. GEOMETRY & TOPOLOGY, 2023, 27 (09) : 3733 - 3800
  • [10] A Lorentzian Gromov-Hausdorff notion of distance
    Noldus, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (04) : 839 - 850