Estimates for Modified (Euclidean) Gromov-Hausdorff Distance

被引:0
|
作者
Malysheva, O. S. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Chair Differential Geometry & Applicat, Moscow, Russia
关键词
Euclidean Gromov-Hausdorff distance; Chebyshev radius; optimal positions of compacts;
D O I
10.3103/S002713222470027X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gromov-Hausdorff distance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\textrm{GH}}(X,Y)$$\end{document} is well-known to be bounded above and below by the diameters of the sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. In this paper, we study the modified Gromov-Hausdorff distance and the orbits of the action of the isometry group's subgroup in Euclidean spaces. It turns out that there are similar restrictions to it, but by the Chebyshev radii of the representatives of the orbits. As a consequence, we give an estimate for the distance between the Chebyshev centers of compact sets for their optimal alignment.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 50 条
  • [1] Approximating Gromov-Hausdorff distance in Euclidean space
    Majhi, Sushovan
    Vitter, Jeffrey
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 116
  • [2] Hausdorff and Gromov-Hausdorff distance
    PROBILITY AND REAL TREES, 2008, 1920 : 45 - 68
  • [3] Gromov-Hausdorff distances in Euclidean spaces
    Memoli, Facundo
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 927 - 934
  • [4] The Gromov-Hausdorff hyperspace of a Euclidean space
    Antonyan, Sergey A.
    ADVANCES IN MATHEMATICS, 2020, 363
  • [5] Quantized Gromov-Hausdorff distance
    Wu, Wei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) : 58 - 98
  • [6] The Gromov-Hausdorff hyperspace of a Euclidean space, II
    Antonyan, Sergey A.
    ADVANCES IN MATHEMATICS, 2021, 393
  • [7] The Gromov-Hausdorff distance between spheres
    Lim, Sunhyuk
    Memoli, Facundo
    Smith, Zane
    GEOMETRY & TOPOLOGY, 2023, 27 (09) : 3733 - 3800
  • [8] A Lorentzian Gromov-Hausdorff notion of distance
    Noldus, J
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (04) : 839 - 850
  • [9] Matricial quantum Gromov-Hausdorff distance
    Kerr, D
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) : 132 - 167
  • [10] Branching Geodesics of the Gromov-Hausdorff Distance
    Ishiki, Yoshito
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 109 - 128