Euclidean Gromov-Hausdorff distance;
Chebyshev radius;
optimal positions of compacts;
D O I:
10.3103/S002713222470027X
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The Gromov-Hausdorff distance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\textrm{GH}}(X,Y)$$\end{document} is well-known to be bounded above and below by the diameters of the sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document}. In this paper, we study the modified Gromov-Hausdorff distance and the orbits of the action of the isometry group's subgroup in Euclidean spaces. It turns out that there are similar restrictions to it, but by the Chebyshev radii of the representatives of the orbits. As a consequence, we give an estimate for the distance between the Chebyshev centers of compact sets for their optimal alignment.
机构:
Pyrus JSC, Moscow, RussiaPyrus JSC, Moscow, Russia
Borzov, Stanislav I.
Ivanov, Alexandr O.
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
Bauman Moscow State Tech Univ, Moscow, Russia
Moscow Ctr Fundamental & Appl Math, Moscow, RussiaPyrus JSC, Moscow, Russia
Ivanov, Alexandr O.
Tuzhilin, Alexey A.
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, RussiaPyrus JSC, Moscow, Russia